The best constant for the centered Hardy-Littlewood maximal inequality

被引:46
作者
Melas, AD [1 ]
机构
[1] Univ Athens, Athens, Greece
关键词
D O I
10.4007/annals.2003.157.647
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the exact value of the best possible constant C for the weak-type (1, 1) inequality for the one-dimensional centered Hardy-Littlewood maximal operator. We prove that C is the largest root of the quadratic equation 12C(2) - 22C + 5 = 0 thus obtaining C = 1.5675208.... This is the first time the best constant for one of the fundamental inequalities satisfied by a centered maximal operator is precisely evaluated.
引用
收藏
页码:647 / 688
页数:42
相关论文
共 14 条
[1]  
Aldaz JM, 1998, P ROY SOC EDINB A, V128, P1
[3]   RESEARCH PROBLEMS IN COMPLEX-ANALYSIS [J].
BRANNAN, DA ;
HAYMAN, WK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :1-35
[4]   A NEW PROOF OF THE HARDY LITTLEWOOD MAXIMAL THEOREM [J].
CARLSSON, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1984, 16 (NOV) :595-596
[5]  
DEGUZMAN M, 1975, LECT NOTES MATH, V481
[6]  
DEGUZMAN M, 1981, N HOLLAND MATH STUDI, V46
[7]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[8]  
Grafakos L, 1997, B LOND MATH SOC, V29, P60
[9]  
MANFREDI J, UNPUB DYNAMICAL SYST
[10]  
MELAS A, IN PRESS ARK MAT