Survival prediction optimization of acute myeloid leukaemia based on T-cell function-related genes and plasma proteins

被引:2
作者
Wang, Yun [1 ]
Chen, Shuzhao [1 ]
Chi, Peidong [2 ]
Nie, Runcong [3 ]
Gale, Robert Peter [1 ,4 ]
Huang, Hanying [1 ]
Chen, Zhigang [5 ]
Cai, Yanyu [5 ]
Yan, Enping [2 ]
Zhang, Xinmei [6 ]
Zhong, Na [6 ]
Liang, Yang [1 ]
机构
[1] Sun Yat Sen Univ, Canc Ctr, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Dept Hematol Onco, 651 Dongfeng East Rd, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, Dept Clin Lab,State Key Lab Oncol South China, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, State Key Lab Oncol South China,Dept Gastr Surg, Guangzhou, Peoples R China
[4] Imperial Coll London, Haematol Ctr, Dept Immunol & Inflammat, London, England
[5] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, State Key Lab Oncol South China,Dept Med Oncol, Guangzhou, Peoples R China
[6] Becton Dickinson Med Devices Shanghai Co Ltd, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
acute myeloid leukaemia; T-cell function-related genes; plasma proteins; POOR-PROGNOSIS; EXPRESSION; RISK; AML; SIGNATURE; RELAPSE; SCORE;
D O I
10.1111/bjh.18453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T-cell function-related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight-gene T-cell function-related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real-world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five-year areas under receiver-operator characteristic curve (AUROC) of 0.67-0.76. The signature was divided into high- and low-risk scores using an optimum cut-off value. Five-year survival in the high-risk groups was 6%-23% compared with 42%-58% in the low-risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high-risk score independently predicted briefer survival with hazard ratios of death in the range 1.28-2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high-risk groups. Accuracy of the gene signature was validated in a real-world cohort with 88 pretherapy plasma samples. In scRNA-seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five-year AUROC of 0.82 compared with 0.76 (p < 0.001). Our T-cell function-related risk score complements current AML prognosis models.
引用
收藏
页码:572 / 586
页数:15
相关论文
共 36 条
  • [21] An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia
    Metzeler, Klaus H.
    Hummel, Manuela
    Bloomfield, Clara D.
    Spiekermann, Karsten
    Braess, Jan
    Sauerland, Maria-Cristina
    Heinecke, Achim
    Radmacher, Michael
    Marcucci, Guido
    Whitman, Susan P.
    Maharry, Kati
    Paschka, Peter
    Larson, Richard A.
    Berdel, Wolfgang E.
    Buerchner, Thomas
    Woermann, Bernhard
    Mansmann, Ulrich
    Hiddemann, Wolfgang
    Bohlander, Stefan K.
    Buske, Christian
    [J]. BLOOD, 2008, 112 (10) : 4193 - 4201
  • [22] High serum levels of soluble interleukin-2 receptor in acute myeloid leukemia: Correlation with poor prognosis and CD4 expression on blast cells
    Nakase, Kazunori
    Kita, Kenkichi
    Kyo, Taiichi
    Tsuji, Kota
    Katayama, Naoyuki
    [J]. CANCER EPIDEMIOLOGY, 2012, 36 (05) : E306 - E309
  • [23] A 17-gene stemness score for rapid determination of risk in acute leukaemia
    Ng, Stanley W. K.
    Mitchell, Amanda
    Kennedy, James A.
    Chen, Weihsu C.
    McLeod, Jessica
    Ibrahimova, Narmin
    Arruda, Andrea
    Popescu, Andreea
    Gupta, Vikas
    Schimmer, Aaron D.
    Schuh, Andre C.
    Yee, Karen W.
    Bullinger, Lars
    Herold, Tobias
    Goerlich, Dennis
    Buechner, Thomas
    Hiddemann, Wolfgang
    Berdel, Wolfgang E.
    Woermann, Bernhard
    Cheok, Meyling
    Preudhomme, Claude
    Dombret, Herve
    Metzeler, Klaus
    Buske, Christian
    Lowenberg, Bob
    Valk, Peter J. M.
    Zandstra, Peter W.
    Minden, Mark D. .
    Dick, John E.
    Wang, Jean C. Y.
    [J]. NATURE, 2016, 540 (7633) : 433 - +
  • [24] Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis
    Nishida, Jun
    Momoi, Yusaku
    Miyakuni, Kosuke
    Tamura, Yusuke
    Takahashi, Kei
    Koinuma, Daizo
    Miyazono, Kohei
    Ehata, Shogo
    [J]. NATURE CELL BIOLOGY, 2020, 22 (04) : 465 - 475
  • [25] RDCT Null RDC Team R Team RC Team T Core Writing TRCT Null, 2011, R LANG ENV STAT COMP, V1, P12
  • [26] limma powers differential expression analyses for RNA-sequencing and microarray studies
    Ritchie, Matthew E.
    Phipson, Belinda
    Wu, Di
    Hu, Yifang
    Law, Charity W.
    Shi, Wei
    Smyth, Gordon K.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (07) : e47
  • [27] Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia
    Rothenberg-Thurley, Maja
    Amler, Susanne
    Goerlich, Dennis
    Koehnke, Thomas
    Konstandin, Nikola P.
    Schneider, Stephanie
    Sauerland, Maria C.
    Herold, Tobias
    Hubmann, Max
    Ksienzyk, Bianka
    Zellmeier, Evelyn
    Bohlander, Stefan K.
    Subklewe, Marion
    Faldum, Andreas
    Hiddemann, Wolfgang
    Braess, Jan
    Spiekermann, Karsten
    Metzeler, Klaus H.
    [J]. LEUKEMIA, 2018, 32 (07) : 1598 - 1608
  • [28] Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    Subramanian, A
    Tamayo, P
    Mootha, VK
    Mukherjee, S
    Ebert, BL
    Gillette, MA
    Paulovich, A
    Pomeroy, SL
    Golub, TR
    Lander, ES
    Mesirov, JP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) : 15545 - 15550
  • [29] Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells
    Tam, Winnie F.
    Gu, Ting-Lei
    Chen, Jing
    Lee, Benjamin H.
    Bullinger, Lars
    Froehling, Stefan
    Wang, Andrew
    Monti, Stefano
    Golub, Todd R.
    Gilliland, D. Gary
    [J]. BLOOD, 2008, 112 (05) : 1981 - 1992
  • [30] Tomczak Katarzyna, 2015, Contemp Oncol (Pozn), V19, pA68, DOI 10.5114/wo.2014.47136