Survival prediction optimization of acute myeloid leukaemia based on T-cell function-related genes and plasma proteins

被引:2
作者
Wang, Yun [1 ]
Chen, Shuzhao [1 ]
Chi, Peidong [2 ]
Nie, Runcong [3 ]
Gale, Robert Peter [1 ,4 ]
Huang, Hanying [1 ]
Chen, Zhigang [5 ]
Cai, Yanyu [5 ]
Yan, Enping [2 ]
Zhang, Xinmei [6 ]
Zhong, Na [6 ]
Liang, Yang [1 ]
机构
[1] Sun Yat Sen Univ, Canc Ctr, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Dept Hematol Onco, 651 Dongfeng East Rd, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, Dept Clin Lab,State Key Lab Oncol South China, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, State Key Lab Oncol South China,Dept Gastr Surg, Guangzhou, Peoples R China
[4] Imperial Coll London, Haematol Ctr, Dept Immunol & Inflammat, London, England
[5] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Canc Ctr, State Key Lab Oncol South China,Dept Med Oncol, Guangzhou, Peoples R China
[6] Becton Dickinson Med Devices Shanghai Co Ltd, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
acute myeloid leukaemia; T-cell function-related genes; plasma proteins; POOR-PROGNOSIS; EXPRESSION; RISK; AML; SIGNATURE; RELAPSE; SCORE;
D O I
10.1111/bjh.18453
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T-cell function-related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight-gene T-cell function-related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real-world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five-year areas under receiver-operator characteristic curve (AUROC) of 0.67-0.76. The signature was divided into high- and low-risk scores using an optimum cut-off value. Five-year survival in the high-risk groups was 6%-23% compared with 42%-58% in the low-risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high-risk score independently predicted briefer survival with hazard ratios of death in the range 1.28-2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high-risk groups. Accuracy of the gene signature was validated in a real-world cohort with 88 pretherapy plasma samples. In scRNA-seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five-year AUROC of 0.82 compared with 0.76 (p < 0.001). Our T-cell function-related risk score complements current AML prognosis models.
引用
收藏
页码:572 / 586
页数:15
相关论文
共 36 条
  • [1] Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing
    Arindrarto, Wibowo
    Borras, Daniel M.
    de Groen, Ruben A. L.
    van den Berg, Redmar R.
    Locher, Irene J.
    van Diessen, Saskia A. M. E.
    van der Holst, Rosalie
    van der Meijden, Edith D.
    Honders, M. Willy
    de Leeuw, Rick H.
    Verlaat, Wina
    Jedema, Inge
    Kroes, Wilma G. M.
    Knijnenburg, Jeroen
    van Wezel, Tom
    Vermaat, Joost S. P.
    Valk, Peter J. M.
    Janssen, Bart
    de Knijff, Peter
    van Bergen, Cornelis A. M.
    van den Akker, Erik B.
    't Hoen, Peter A. C.
    Kielbasa, Szymon M.
    Laros, Jeroen F. J.
    Griffioen, Marieke
    Veelken, Hendrik
    [J]. LEUKEMIA, 2021, 35 (01) : 47 - 61
  • [2] T-Cell Receptor-Based Immunotherapy for Hematologic Malignancies
    Biernacki, Melinda A.
    Brault, Michelle
    Bleakley, Marie
    [J]. CANCER JOURNAL, 2019, 25 (03) : 179 - 190
  • [3] Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks
    Blanche, Paul
    Dartigues, Jean-Francois
    Jacqmin-Gadda, Helene
    [J]. STATISTICS IN MEDICINE, 2013, 32 (30) : 5381 - 5397
  • [4] Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia:: results from Cancer and Leukemia Group B (CALGB 8461)
    Byrd, JC
    Mrózek, K
    Dodge, RK
    Carroll, AJ
    Edwards, CG
    Arthur, DC
    Pettenati, MJ
    Patil, SR
    Rao, KW
    Watson, MS
    Koduru, PRK
    Moore, JO
    Stone, RM
    Mayer, RJ
    Feldman, EJ
    Davey, FR
    Schiffer, CA
    Larson, RA
    Bloomfield, CD
    [J]. BLOOD, 2002, 100 (13) : 4325 - 4336
  • [5] LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration
    Deng, Mi
    Gui, Xun
    Kim, Jaehyup
    Xie, Li
    Chen, Weina
    Li, Zunling
    He, Licai
    Chen, Yuanzhi
    Chen, Heyu
    Luo, Weiguang
    Lu, Zhigang
    Xie, Jingjing
    Churchill, Hywyn
    Xu, Yixiang
    Zhou, Zhan
    Wu, Guojin
    Yu, Chenyi
    John, Samuel
    Hirayasu, Kouyuki
    Nam Nguyen
    Liu, Xiaoye
    Huang, Fangfang
    Li, Leike
    Deng, Hui
    Tang, Haidong
    Sadek, Ali H.
    Zhang, Lingbo
    Huang, Tao
    Zou, Yizhou
    Chen, Benjamin
    Zhu, Hong
    Arase, Hisashi
    Xia, Ningshao
    Jiang, Youxing
    Collins, Robert
    You, M. James
    Homsi, Jade
    Unni, Nisha
    Lewis, Cheryl
    Chen, Guo-Qiang
    Fu, Yang-Xin
    Liao, X. Charlene
    An, Zhiqiang
    Zheng, Junke
    Zhang, Ningyan
    Zhang, Cheng Cheng
    [J]. NATURE, 2018, 562 (7728) : 605 - +
  • [6] Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
    Doehner, Hartmut
    Estey, Elihu
    Grimwade, David
    Amadori, Sergio
    Appelbaum, Frederick R.
    Buechner, Thomas
    Dombret, Herve
    Ebert, Benjamin L.
    Fenaux, Pierre
    Larson, Richard A.
    Levine, Ross L.
    Lo-Coco, Francesco
    Naoe, Tomoki
    Niederwieser, Dietger
    Ossenkoppele, Gert J.
    Sanz, Miguel
    Sierra, Jorge
    Tallman, Martin S.
    Tien, Hwei-Fang
    Wei, Andrew H.
    Lowenberg, Bob
    Bloomfield, Clara D.
    [J]. BLOOD, 2017, 129 (04) : 424 - 447
  • [7] High IL2RA mRNA expression is an independent adverse prognostic biomarker in core binding factor and intermediate-risk acute myeloid leukemia
    Du, Wen
    He, Jing
    Zhou, Wei
    Shu, Simin
    Li, Juan
    Liu, Wei
    Deng, Yun
    Lu, Cong
    Lin, Shengyan
    Ma, Yaokun
    He, Yanli
    Zheng, Jine
    Zhu, Jiang
    Bai, Lijuan
    Li, Xiaoqing
    Yao, Junxia
    Hu, Dan
    Gu, Shengqing
    Li, Huiyu
    Guo, Anyuan
    Huang, Shiang
    Feng, Xiaolan
    Hu, Dong
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (1)
  • [8] Acute myeloid leukemia: 2021 update on risk-stratification and management
    Estey, Elihu H.
    [J]. AMERICAN JOURNAL OF HEMATOLOGY, 2020, 95 (11) : 1368 - 1398
  • [9] Commentary: does immune suppression increase risk of developing acute myeloid leukemia?
    Gale, R. P.
    Opelz, G.
    [J]. LEUKEMIA, 2012, 26 (03) : 422 - 423
  • [10] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    [J]. CELL, 2021, 184 (13) : 3573 - +