Application of a new hybrid neuro-evolutionary system for day-ahead price forecasting of electricity markets

被引:37
|
作者
Amjady, Nima [1 ]
Keynia, Farshid [1 ]
机构
[1] Semnan Univ, Dept Elect Engn, Semnan, Iran
关键词
Hybrid neuro-evolutionary system; Neural network; Evolutionary algorithm; Price forecast; CONFIDENCE-INTERVAL ESTIMATION; ARIMA MODELS; NETWORK; PREDICTION; INFORMATION;
D O I
10.1016/j.asoc.2009.09.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new forecast strategy is proposed for day-ahead prediction of electricity prices, which are so valuable for both producers and consumers in the new competitive electric power markets. However, electricity price has a nonlinear, volatile and time dependent behavior owning many outliers. Our forecast strategy is composed of a preprocessor and a Hybrid Neuro-Evolutionary System (HNES). Preprocessor selects the input features of the HNES according to MRMR ( Maximum Relevance Minimum Redundancy) principal. The HNES is composed of three Neural Networks (NN) and Evolutionary Algorithms ( EA) in a cascaded structure with a new data flow among its building blocks. The effectiveness of the whole proposed method is demonstrated by means of real data of the PJM and Spanish electricity markets. Also, the proposed price forecast strategy is compared with some of the most recent techniques in the area. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:784 / 792
页数:9
相关论文
共 50 条
  • [21] Day-Ahead Price Forecasting for the Spanish Electricity Market
    Romero, Alvaro
    Ramon Dorronsoro, Jose
    Diaz, Julia
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (04): : 42 - 50
  • [22] Deep learning for day-ahead electricity price forecasting
    Zhang, Chi
    Li, Ran
    Shi, Heng
    Li, Furong
    IET SMART GRID, 2020, 3 (04) : 462 - 469
  • [23] A Hybrid Model for Day-Ahead Price Forecasting
    Wu, Lei
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (03) : 1519 - 1530
  • [24] A hybrid day-ahead electricity price forecasting framework based on time series
    Xiong, Xiaoping
    Qing, Guohua
    ENERGY, 2023, 264
  • [25] A Deep Learning Based Hybrid Framework for Day-Ahead Electricity Price Forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Ma, Zhengwei
    IEEE ACCESS, 2020, 8 : 143423 - 143436
  • [26] A Hybrid GRU-LightGBM Model for Day-Ahead Electricity Price Forecasting
    Li, Junlong
    Zhang, Chao
    You, Peipei
    Yin, Shuo
    Lu, Yao
    Li, Chengren
    2024 3rd International Conference on Energy and Electrical Power Systems, ICEEPS 2024, 2024, : 630 - 634
  • [27] A Hybrid GRU-LightGBM Model for Day-Ahead Electricity Price Forecasting
    Li, Junlong
    Zhang, Chao
    You, Peipei
    Yin, Shuo
    Lu, Yao
    Li, Chengren
    2024 3RD INTERNATIONAL CONFERENCE ON ENERGY AND ELECTRICAL POWER SYSTEMS, ICEEPS 2024, 2024, : 630 - 634
  • [28] A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting
    Srivastava, Ankit Kumar
    Pandey, Ajay Shekhar
    Elavarasan, Rajvikram Madurai
    Subramaniam, Umashankar
    Mekhilef, Saad
    Mihet-Popa, Lucian
    ENERGIES, 2021, 14 (24)
  • [29] Forecasting price spikes in European day-ahead electricity markets using decision trees
    Fragkioudaki, Anna
    Marinakis, Adamantios
    Cherkaoui, Rachid
    2015 12TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2015,
  • [30] Day-ahead price forecasting of electricity markets based on local informative vector machine
    Elattar, Ehab Elsayed
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2013, 7 (10) : 1063 - 1071