Cryo-EM Map-Based Model Validation Using the False Discovery Rate Approach

被引:4
|
作者
Olek, Mateusz [1 ,2 ]
Joseph, Agnel Praveen [3 ]
机构
[1] Univ York, Dept Chem, York, N Yorkshire, England
[2] Rutherford Appleton Lab, Electron BioImaging Ctr, Didcot, Oxon, England
[3] Sci & Technol Facil Council, Sci Comp Dept, Res Complex Harwell, Didcot, Oxon, England
基金
英国惠康基金;
关键词
cryo-EM; model validation; FDR map; CCP-EM; automated model building; VISUALIZATION; REFINEMENT; SOFTWARE;
D O I
10.3389/fmolb.2021.652530
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significant technological developments and increasing scientific interest in cryogenic electron microscopy (cryo-EM) has resulted in a rapid increase in the amount of data generated by these experiments and the derived atomic models. Robust measures for the validation of 3D reconstructions and atomic models are essential for appropriate interpretation of the data. The resolution of data and availability of software tools that work across a range of resolutions often limit the quality of derived models. Hence, the final atomic model is often incomplete or contains regions where atomic positions are less reliable or incorrectly built. Extensive manual pruning and local adjustments or rebuilding are usually required to address these issues. The presented research introduces a software tool for the validation of the backbone trace of atomic models built in the cryo-EM density maps. In this study, we use the false discovery rate analysis, which can be used to segregate molecular signals from the background. Each atomic position in the model can be associated with an FDR backbone validation score, which can be used to identify potential mistraced residues. We demonstrate that the proposed validation score is complementary to existing validation metrics and is useful especially in cases where the model is built in the maps having varying local resolution. We also discuss the application of the score for automated pruning of atomic models built ab-initio during the iterative model building process in Buccaneer. We have implemented this score in the CCP-EM software suite.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Cryo-EM model validation using independent map reconstructions
    DiMaio, Frank
    Zhang, Junjie
    Chiu, Wah
    Baker, David
    PROTEIN SCIENCE, 2013, 22 (06) : 865 - 868
  • [2] Thresholding of cryo-EM density maps by false discovery rate control
    Beckers, Maximilian
    Jakobi, Arjen J.
    Sachse, Carsten
    IUCRJ, 2019, 6 : 18 - 33
  • [3] Outcomes of the Cryo-EM Map and Model Challenges
    Lawson, Catherine L.
    Kryshtafovych, Andriy
    Pintilie, Grigore
    Berman, Helen M.
    Chiu, Wah
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 160A - 160A
  • [4] Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model
    Kim, Doo Nam
    Sanbonmatsu, Karissa Y.
    BIOSCIENCE REPORTS, 2017, 37
  • [5] Fragment-based drug discovery using cryo-EM
    Saur, Michael
    Hartshorn, Michael J.
    Dong, Jing
    Reeks, Judith
    Bunkoczi, Gabor
    Jhoti, Harren
    Williams, Pamela A.
    DRUG DISCOVERY TODAY, 2020, 25 (03) : 485 - 490
  • [6] Single particle cryo-EM map and model validation: It's not crystal clear
    Lander, Gabriel C.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 89
  • [7] Cryo-EM map interpretation and protein model-building using iterative map segmentation
    Terwilliger, Thomas C.
    Adams, Paul D.
    Afonine, Pavel, V
    Sobolev, Oleg, V
    PROTEIN SCIENCE, 2020, 29 (01) : 87 - 99
  • [8] A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality
    Herzik, Mark A., Jr.
    Fraser, James S.
    Lander, Gabriel C.
    STRUCTURE, 2019, 27 (02) : 344 - +
  • [9] Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge
    Catherine L. Lawson
    Andriy Kryshtafovych
    Paul D. Adams
    Pavel V. Afonine
    Matthew L. Baker
    Benjamin A. Barad
    Paul Bond
    Tom Burnley
    Renzhi Cao
    Jianlin Cheng
    Grzegorz Chojnowski
    Kevin Cowtan
    Ken A. Dill
    Frank DiMaio
    Daniel P. Farrell
    James S. Fraser
    Mark A. Herzik
    Soon Wen Hoh
    Jie Hou
    Li-Wei Hung
    Maxim Igaev
    Agnel P. Joseph
    Daisuke Kihara
    Dilip Kumar
    Sumit Mittal
    Bohdan Monastyrskyy
    Mateusz Olek
    Colin M. Palmer
    Ardan Patwardhan
    Alberto Perez
    Jonas Pfab
    Grigore D. Pintilie
    Jane S. Richardson
    Peter B. Rosenthal
    Daipayan Sarkar
    Luisa U. Schäfer
    Michael F. Schmid
    Gunnar F. Schröder
    Mrinal Shekhar
    Dong Si
    Abishek Singharoy
    Genki Terashi
    Thomas C. Terwilliger
    Andrea Vaiana
    Liguo Wang
    Zhe Wang
    Stephanie A. Wankowicz
    Christopher J. Williams
    Martyn Winn
    Tianqi Wu
    Nature Methods, 2021, 18 : 156 - 164
  • [10] Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge
    Lawson, Catherine L.
    Kryshtafovych, Andriy
    Adams, Paul D.
    Afonine, Pavel, V
    Baker, Matthew L.
    Barad, Benjamin A.
    Bond, Paul
    Burnley, Tom
    Cao, Renzhi
    Cheng, Jianlin
    Chojnowski, Grzegorz
    Cowtan, Kevin
    Dill, Ken A.
    DiMaio, Frank
    Farrell, Daniel P.
    Fraser, James S.
    Herzik, Mark A., Jr.
    Hoh, Soon Wen
    Hou, Jie
    Hung, Li-Wei
    Igaev, Maxim
    Joseph, Agnel P.
    Kihara, Daisuke
    Kumar, Dilip
    Mittal, Sumit
    Monastyrskyy, Bohdan
    Olek, Mateusz
    Palmer, Colin M.
    Patwardhan, Ardan
    Perez, Alberto
    Pfab, Jonas
    Pintilie, Grigore D.
    Richardson, Jane S.
    Rosenthal, Peter B.
    Sarkar, Daipayan
    Schafer, Luisa U.
    Schmid, Michael F.
    Schroder, Gunnar F.
    Shekhar, Mrinal
    Si, Dong
    Singharoy, Abishek
    Terashi, Genki
    Terwilliger, Thomas C.
    Vaiana, Andrea
    Wang, Liguo
    Wang, Zhe
    Wankowicz, Stephanie A.
    Williams, Christopher J.
    Winn, Martyn
    Wu, Tianqi
    NATURE METHODS, 2021, 18 (02) : 156 - +