Effective Resistivity in Collisionless Magnetic Reconnection

被引:2
作者
Ma, Z. W. [1 ]
Chen, T. [1 ]
Zhang, H. W. [1 ]
Yu, M. Y. [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CURRENT SHEET; CONDUCTIVITY; MAGNETOTAIL;
D O I
10.1038/s41598-018-28851-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An effective resistivity relevant to collisionless magnetic reconnection (MR) in plasma is presented. It is based on the argument that pitch angle scattering of electrons in the small electron diffusion region around the X line can lead to an effective, resistivity in collisionless plasma. The effective resistivity so obtained is in the form of a power law of the local plasma and magnetic field parameters. Its validity is confirmed by direct collisionless particle-in-cell (PIC) simulation. The result agrees very well with the resistivity (obtained from available data) of a large number of environments susceptible to MR: from the intergalactic and interstellar to solar and terrestrial to laboratory fusion plasmas. The scaling law can readily be incorporated into existing collisional magnetohydrodynamic simulation codes to investigate collisionless MR, as well as serve as a guide to ab initio theoretical investigations of the collisionless MR process.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] On the radial force balance in the quiet time magnetotail current sheet
    Artemyev, A. V.
    Angelopoulos, V.
    Runov, A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (05) : 4017 - 4026
  • [2] CONDUCTION MODE VARIATION AND INERTIAL CONDUCTIVITY
    BAUM, PJ
    BRATENAHL, A
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1977, 49 (02) : 473 - 480
  • [3] Electron-scale measurements of magnetic reconnection in space
    Burch, J. L.
    Torbert, R. B.
    Phan, T. D.
    Chen, L. -J.
    Moore, T. E.
    Ergun, R. E.
    Eastwood, J. P.
    Gershman, D. J.
    Cassak, P. A.
    Argall, M. R.
    Wang, S.
    Hesse, M.
    Pollock, C. J.
    Giles, B. L.
    Nakamura, R.
    Mauk, B. H.
    Fuselier, S. A.
    Russell, C. T.
    Strangeway, R. J.
    Drake, J. F.
    Shay, M. A.
    Khotyaintsev, Yu. V.
    Lindqvist, P. -A.
    Marklund, G.
    Wilder, F. D.
    Young, D. T.
    Torkar, K.
    Goldstein, J.
    Dorelli, J. C.
    Avanov, L. A.
    Oka, M.
    Baker, D. N.
    Jaynes, A. N.
    Goodrich, K. A.
    Cohen, I. J.
    Turner, D. L.
    Fennell, J. F.
    Blake, J. B.
    Clemmons, J.
    Goldman, M.
    Newman, D.
    Petrinec, S. M.
    Trattner, K. J.
    Lavraud, B.
    Reiff, P. H.
    Baumjohann, W.
    Magnes, W.
    Steller, M.
    Lewis, W.
    Saito, Y.
    [J]. SCIENCE, 2016, 352 (6290)
  • [4] Scaling of the inner electron diffusion region in collisionless magnetic reconnection
    Divin, A.
    Lapenta, G.
    Markidis, S.
    Semenov, V. S.
    Erkaev, N. V.
    Korovinskiy, D. B.
    Biernat, H. K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [5] INTERPLANETARY MAGNETIC FIELD AND AURORAL ZONES
    DUNGEY, JW
    [J]. PHYSICAL REVIEW LETTERS, 1961, 6 (02) : 47 - &
  • [6] Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence
    Eyink, Gregory
    Vishniac, Ethan
    Lalescu, Cristian
    Aluie, Hussein
    Kanov, Kalin
    Buerger, Kai
    Burns, Randal
    Meneveau, Charles
    Szalay, Alexander
    [J]. NATURE, 2013, 497 (7450) : 466 - 469
  • [7] Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas
    Ji, Hantao
    Daughton, William
    [J]. PHYSICS OF PLASMAS, 2011, 18 (11)
  • [8] KOPP RA, 1976, SOL PHYS, V50, P85, DOI 10.1007/BF00206193
  • [9] THE THICKNESS AND STRUCTURE OF HIGH BETA-MAGNETOPAUSE CURRENT LAYER
    LE, G
    RUSSELL, CT
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (23) : 2451 - 2454
  • [10] Formation of super-Alfvenic electron jets during laser-driven magnetic reconnection at the Shenguang-II facility: particle-in-cell simulations
    Lu, San
    Lu, Quanming
    Huang, Can
    Dong, Quanli
    Zhu, Jianqiang
    Sheng, Zhengming
    Wang, Shui
    Zhang, Jie
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16