Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase

被引:31
作者
Bazil, Jason N. [1 ]
Pannala, Venkat R. [2 ,3 ]
Dash, Ranjan K. [2 ,3 ]
Beard, Daniel A. [1 ]
机构
[1] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
[2] Med Coll Wisconsin, Biotechnol & Bioengn Ctr, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA
基金
美国国家卫生研究院;
关键词
Complex I; Electron transport chain; Mathematical model; Mitochondrial metabolism; NADH:ubiquinone oxidoreductase; Reactive oxygen species; NADH-UBIQUINONE OXIDOREDUCTASE; MITOCHONDRIAL COMPLEX-I; NAD(P)H REDOX STATE; OXIDATIVE-PHOSPHORYLATION; PROTON-TRANSLOCATION; KINETICS; SITES; MODEL; GENERATION; MECHANISM;
D O I
10.1016/j.freeradbiomed.2014.08.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NADH:ubiquinone oxidoreductase (complex I) is a proton pump in the electron transport chain that can produce a significant amounts of superoxide and hydrogen peroxide. While the flavin mononucleotide (FMN) is the putative site for hydrogen peroxide generation, sites responsible for superoxide are less certain. Here, data on complex I kinetics and ROS generation are analyzed using a computational model to determine the sites responsible for superoxide. The analysis includes all the major redox centers: the FMN, iron-sulfur cluster N2, and semiquinone. Analysis reveals that the fully reduced FMN and semiquinone are the primary sources of superoxide, and the iron-sulfur cluster N2 produces none. The FMN radical only produces ROS when the quinone reductase site is blocked. Model simulations reveal that ROS generation is maximized during reverse electron transport with both the FMN and the semiquinone producing similar amounts of superoxide. In addition, the model successfully predicts the increase in ROS generation when the membrane potential is high and matrix pH is alkaline. Of the total ROS produced by complex I, the majority originates from the FMN. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 33 条
[11]   Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I [J].
Grivennikova, Vera G. ;
Vinogradov, Andrei D. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (03) :446-454
[12]   Effect of the side chain structure of coenzyme Q on the steady state kinetics of bovine heart NADH:coenzyme Q oxidoreductase [J].
Hano, N ;
Nakashima, Y ;
Shinzawa-Itoh, K ;
Yoshikawa, S .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2003, 35 (03) :257-265
[13]   Mitochondrial Complex I [J].
Hirst, Judy .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 82, 2013, 82 :551-575
[14]   Mitochondrial hydrogen peroxide production as determined by the pyridine nucleotide pool and its redox state [J].
Kareyeva, Alexandra V. ;
Grivennikova, Vera G. ;
Vinogradov, Andrei D. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (10) :1879-1885
[15]   A model of oxidative phosphorylation in mammalian skeletal muscle [J].
Korzeniewski, B ;
Zoladz, JA .
BIOPHYSICAL CHEMISTRY, 2001, 92 (1-2) :17-34
[16]   SLOW ACTIVE INACTIVE TRANSITION OF THE MITOCHONDRIAL NADH-UBIQUINONE REDUCTASE [J].
KOTLYAR, AB ;
VINOGRADOV, AD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1019 (02) :151-158
[17]   The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria [J].
Kussmaul, Lothar ;
Hirst, Judy .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (20) :7607-7612
[18]   Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state [J].
Lambert, Adrian J. ;
Buckingham, Julie A. ;
Brand, Martin D. .
FEBS LETTERS, 2008, 582 (12) :1711-1714
[19]   Generation of reactive oxygen species by the mitochondrial electron transport chain [J].
Liu, YB ;
Fiskum, G ;
Schubert, D .
JOURNAL OF NEUROCHEMISTRY, 2002, 80 (05) :780-787
[20]  
Nicholls DG., 2013, BIOENERGETICS 4