Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase

被引:31
作者
Bazil, Jason N. [1 ]
Pannala, Venkat R. [2 ,3 ]
Dash, Ranjan K. [2 ,3 ]
Beard, Daniel A. [1 ]
机构
[1] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
[2] Med Coll Wisconsin, Biotechnol & Bioengn Ctr, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA
基金
美国国家卫生研究院;
关键词
Complex I; Electron transport chain; Mathematical model; Mitochondrial metabolism; NADH:ubiquinone oxidoreductase; Reactive oxygen species; NADH-UBIQUINONE OXIDOREDUCTASE; MITOCHONDRIAL COMPLEX-I; NAD(P)H REDOX STATE; OXIDATIVE-PHOSPHORYLATION; PROTON-TRANSLOCATION; KINETICS; SITES; MODEL; GENERATION; MECHANISM;
D O I
10.1016/j.freeradbiomed.2014.08.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NADH:ubiquinone oxidoreductase (complex I) is a proton pump in the electron transport chain that can produce a significant amounts of superoxide and hydrogen peroxide. While the flavin mononucleotide (FMN) is the putative site for hydrogen peroxide generation, sites responsible for superoxide are less certain. Here, data on complex I kinetics and ROS generation are analyzed using a computational model to determine the sites responsible for superoxide. The analysis includes all the major redox centers: the FMN, iron-sulfur cluster N2, and semiquinone. Analysis reveals that the fully reduced FMN and semiquinone are the primary sources of superoxide, and the iron-sulfur cluster N2 produces none. The FMN radical only produces ROS when the quinone reductase site is blocked. Model simulations reveal that ROS generation is maximized during reverse electron transport with both the FMN and the semiquinone producing similar amounts of superoxide. In addition, the model successfully predicts the increase in ROS generation when the membrane potential is high and matrix pH is alkaline. Of the total ROS produced by complex I, the majority originates from the FMN. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 33 条
[1]   Analysis of the Kinetics and Bistability of Ubiquinol:Cytochrome c Oxidoreductase [J].
Bazil, Jason N. ;
Vinnakota, Kalyan C. ;
Wu, Fan ;
Beard, Daniel A. .
BIOPHYSICAL JOURNAL, 2013, 105 (02) :343-355
[2]   A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation [J].
Beard, DA .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (04) :252-264
[3]   Metabolic network control of oxidative phosphorylation - Multiple roles of inorganic phosphate [J].
Bose, S ;
French, S ;
Evans, FJ ;
Joubert, F ;
Balaban, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :39155-39165
[4]   Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction [J].
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1318 (1-2) :79-91
[5]   Energy converting NADH:Quinone oxidoreductase (Complex I) [J].
Brandt, Ulrich .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :69-92
[6]   Kinetics and Regulation of Mammalian NADH-Ubiquinone Oxidoreductase (Complex I) [J].
Chen, Xuewen ;
Qi, Feng ;
Dash, Ranjan K. ;
Beard, Daniel A. .
BIOPHYSICAL JOURNAL, 2010, 99 (05) :1426-1436
[7]   Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress [J].
Du, LN ;
Zhang, XP ;
Han, YY ;
Burke, NA ;
Kochanek, PM ;
Watkins, SC ;
Graham, SH ;
Carcillo, JA ;
Szabó, C ;
Clark, RSB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :18426-18433
[8]   Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria [J].
Esterhazy, Daria ;
King, Martin S. ;
Yakovlev, Gregory ;
Hirst, Judy .
BIOCHEMISTRY, 2008, 47 (12) :3964-3971
[9]   Postischemic Oxidative Stress Promotes Mitochondrial Metabolic Failure in Neurons and Astrocytes [J].
Fiskum, Gary ;
Danilov, Camelia A. ;
Mehrabian, Zara ;
Bambrick, Linda L. ;
Kristian, Tibor ;
McKenna, Mary C. ;
Hopkins, Irene ;
Richards, E. M. ;
Rosenthal, Robert E. .
MITOCHONDRIA AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISORDERS, 2008, 1147 :129-138
[10]   The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2 [J].
Genova, ML ;
Ventura, B ;
Giuliano, G ;
Bovina, C ;
Formiggini, G ;
Castelli, GP ;
Lenaz, G .
FEBS LETTERS, 2001, 505 (03) :364-368