Preparation and characterization of platinum alloy catalysts supported on N-doped reduced graphene oxide for Anode in Direct Ethanol Fuel Cell (DEFC)

被引:10
作者
Mahamai, N. [1 ]
Prom-anan, T. [1 ]
Sarakonsri, T. [1 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Chem, Renewable Energy Lab, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand
关键词
Pt bimetallic nanoparticle; Microwave-assisted; N-doped reduced graphene oxide; Nickel; Tin; Ruthenium; ELECTROCATALYTIC ACTIVITY; REDUCTION; OXIDATION; PTSN/C; RU;
D O I
10.1016/j.matpr.2019.06.182
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Pt bimetallic nanoparticles supported on N-doped reduced graphene oxide (NrGO) can increase catalytic activities in Anode for Hydrogen Fuel Cell, also in Direct Ethanol Fuel Cell (DEFC) when compare with Pt nanoparticles. In this study, PtNi and PtRu nanoparticles supported on NrGO can be prepared by microwave-assisted method while PtSn nanoparticles supported on NrGO can be prepared by NaBH4 reduction method. NrGO can be prepared by Modified Hummers Method, then reduced by annealing under Nitrogen gas atmosphere and N-added by annealing with melamine. The X-Ray Diffraction (XRD) patterns display the alloy forms of Pt-M alloy nanoparticles (M = Ni, Sn, Ru), which can be confirmed by Energy dispersive spectroscopy (EDS) data and electron diffraction (SAD) patterns. Particle sizes were measured from TEM images. Hence, this paper presents the average particle sizes of PtNi = 14.58 +/- 14.33 nm, PtRu = 6.01 +/- 1.44 nm and PtSn = 5.24 +/- 0.81 nm. Catalytic activity of these materials will be tested by fuel cell test station to confirm the superior activity over commercial Pt/C catalyst. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1561 / 1568
页数:8
相关论文
共 23 条
[1]   An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts [J].
Almeida, T. S. ;
Palma, L. M. ;
Leonello, P. H. ;
Morais, C. ;
Kokoh, K. B. ;
De Andrade, A. R. .
JOURNAL OF POWER SOURCES, 2012, 215 :53-62
[2]   Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method [J].
Almeida, T. S. ;
Kokoh, K. B. ;
De Andrade, A. R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (06) :3803-3810
[3]  
Aricò AS, 1998, ELECTROCHEM SOLID ST, V1, P66, DOI 10.1149/1.1390638
[4]   Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals [J].
Baghbanzadeh, Mostafa ;
Carbone, Luigi ;
Cozzoli, P. Davide ;
Kappe, C. Oliver .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (48) :11312-11359
[5]   Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective [J].
Banham, Dustin ;
Ye, Siyu .
ACS ENERGY LETTERS, 2017, 2 (03) :629-638
[6]   A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell [J].
Datta, J. ;
Singh, S. ;
Das, S. ;
Bandyopadhyay, N. R. .
BULLETIN OF MATERIALS SCIENCE, 2009, 32 (06) :643-652
[7]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[8]   Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes [J].
Jarulertwathana, Nutpaphat ;
Laokawee, Viratchara ;
Susingrat, Warapa ;
Hwang, Seong-Ju ;
Sarakonsri, Thapanee .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (24) :18994-19002
[9]   Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells [J].
Jeong, Heon Jae ;
Kim, Jun Woo ;
Jang, Dong Young ;
Shim, Joon Hyung .
JOURNAL OF POWER SOURCES, 2015, 291 :239-245
[10]   Review: Direct ethanol fuel cells [J].
Kamarudin, M. Z. F. ;
Kamarudin, S. K. ;
Masdar, M. S. ;
Daud, W. R. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) :9438-9453