Stability conditions in families

被引:49
作者
Bayer, Arend [1 ,2 ]
Lahoz, Marti [3 ,4 ]
Macri, Emanuele [5 ,6 ]
Nuer, Howard [7 ,8 ]
Perry, Alexander [9 ,10 ]
Stellari, Paolo [11 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Paris Diderot Paris 7, Batiment Sophie Germain,Case 7012, F-75205 Paris 13, France
[4] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
[5] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[6] Univ Paris Saclay, CNRS, Lab Math Orsay, Rue Michel Magat,Bat 307, F-91405 Orsay, France
[7] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[8] Technion Israel Inst Technol, Dept Math, Amado 914, IL-32000 Haifa, Israel
[9] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[10] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[11] Univ Milan, Dipartimento Matemat F Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2021年 / 133卷 / 01期
关键词
BOGOMOLOV-GIESEKER INEQUALITY; MODULI SPACES; TRIANGULATED CATEGORIES; BRIDGELAND STABILITY; HODGE-CONJECTURE; CUBIC FOURFOLDS; STABLE SHEAVES; T-STRUCTURES; MORI CONES; EQUIVALENCES;
D O I
10.1007/s10240-021-00124-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of Bridgeland stability conditions and moduli spaces of semistable objects for a family of varieties. Our approach is based on and generalizes previous work by Abramovich-Polishchuk, Kuznetsov, Lieblich, and Piyaratne-Toda. Our notion includes openness of stability, semistable reduction, a support property uniformly across the family, and boundedness of semistable objects. We show that such a structure exists whenever stability conditions are known to exist on the fibers. Our main application is the generalization of Mukai's theory for moduli spaces of semistable sheaves on K3 surfaces to moduli spaces of Bridgeland semistable objects in the Kuznetsov component associated to a cubic fourfold. This leads to the extension of theorems by Addington-Thomas and Huybrechts on the derived category of special cubic fourfolds, to a new proof of the integral Hodge conjecture, and to the construction of an infinite series of unirational locally complete families of polarized hyperkahler manifolds of K3 type. Other applications include the deformation-invariance of Donaldson-Thomas invariants counting Bridgeland stable objects on Calabi-Yau threefolds, and a method for constructing stability conditions on threefolds via degeneration.
引用
收藏
页码:157 / 325
页数:169
相关论文
共 123 条
[31]   Gushel-Mukai varieties: Linear spaces and periods [J].
Debarre, Olivier ;
Kuznetsov, Alexander .
KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (04) :897-953
[32]   On the Period Map for Polarized Hyperkahler Fourfolds [J].
Debarre, Olivier ;
Macri, Emanuele .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (22) :6887-6923
[33]   Gushel-Mukai varieties: Classification and birationalities [J].
Debarre, Olivier ;
Kuznetsov, Alexander .
ALGEBRAIC GEOMETRY, 2018, 5 (01) :15-76
[34]   Hyper-Kahler fourfolds and Grassmann geometry [J].
Debarre, Olivier ;
Voisin, Claire .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 :63-87
[35]  
Douglas M.R., 2002, P INT C MATH BEIJ 20, P395
[36]  
Fantechi B, 1999, J ALGEBRAIC GEOM, V8, P31
[37]  
Fulton W., 1998, Intersection theory
[38]  
Gaitsgory D., 2017, STUDY DERIVED ALGEBR
[39]   THEOREM OF BOGOMOLOV ON CHERN CLASSES OF STABLE BUNDLES [J].
GIESEKER, D .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (01) :77-85
[40]  
Grothendieck A, 1966, Publications Mathematiques de l'IHES, V28, P5