Level sets of multiparameter Brownian motions

被引:0
作者
Mountford, TS [1 ]
Nualart, E
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2004年 / 9卷
关键词
local times; Hausdorff measure; level sets; additive Brownian motion;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use Girsanov's theorem to establish a conjecture of Khoshnevisan, Xiao and Zhong that phi(r) = r(N-d/2) (log log(1/r))(d/2) is the exact Hausforff measure function for the zero level set of an N-parameter d-dimensional additive Brownian motion. We extend this result to a natural multiparameter version of Taylor and Wendel's theorem on the relationship between Brownian local time and the Hausdorff phi-measure of the zero set.
引用
收藏
页码:594 / 614
页数:21
相关论文
共 14 条
[1]  
[Anonymous], 1998, CONTINUOUS MARTINGAL
[2]   Potential theory for hyperbolic SPDEs [J].
Dalang, RC ;
Nualart, E .
ANNALS OF PROBABILITY, 2004, 32 (3A) :2099-2148
[3]  
Falconer K. J., 1985, The geometry of fractal sets
[4]   OCCUPATION DENSITIES [J].
GEMAN, D ;
HOROWITZ, J .
ANNALS OF PROBABILITY, 1980, 8 (01) :1-67
[5]   A LOCAL TIME ANALYSIS OF INTERSECTIONS OF BROWNIAN PATHS IN THE PLANE [J].
GEMAN, D ;
HOROWITZ, J ;
ROSEN, J .
ANNALS OF PROBABILITY, 1984, 12 (01) :86-107
[6]  
Mueller C., 2002, Electron. J. Probab, V7, P29, DOI [DOI 10.1214/EJP.V7-109, 10.1214/EJP.v7-109]
[7]   SAMPLE FUNCTIONS OF N-PARAMETER WIENER PROCESS [J].
OREY, S ;
PRUITT, WE .
ANNALS OF PROBABILITY, 1973, 1 (01) :138-163
[8]   THE EXACT HAUSDORFF MEASURE OF THE LEVEL SETS OF BROWNIAN-MOTION [J].
PERKINS, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (03) :373-388
[9]  
Rogers C.A., 1970, Hausdorff Measures
[10]  
TAYLOR SJ, 1967, J MATH MECH, V16, P1229