Prediction of LDL cholesterol response to statin using transcriptomic and genetic variation

被引:24
作者
Kim, Kyungpil [1 ]
Bolotin, Eugene [1 ]
Theusch, Elizabeth [1 ]
Huang, Haiyan [2 ]
Medina, Marisa W. [1 ]
Krauss, Ronald M. [1 ]
机构
[1] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
GENOME-WIDE ASSOCIATION; LIPID-METABOLISM; EXPRESSION; THERAPY; ROSUVASTATIN; DETERMINANTS;
D O I
10.1186/s13059-014-0460-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Statins are widely prescribed for lowering LDL-cholesterol (LDLC) levels and risk of cardiovascular disease. There is, however, substantial inter-individual variation in the magnitude of statin-induced LDLC reduction. To date, analysis of individual DNA sequence variants has explained only a small proportion of this variability. The present study was aimed at assessing whether transcriptomic analyses could be used to identify additional genetic contributions to inter-individual differences in statin efficacy. Results: Using expression array data from immortalized lymphoblastoid cell lines derived from 372 participants of the Cholesterol and Pharmacogenetics clinical trial, we identify 100 signature genes differentiating high versus low statin responders. A radial-basis support vector machine prediction model of these signature genes explains 12.3% of the variance in statin-mediated LDLC change. Addition of SNPs either associated with expression levels of the signature genes (eQTLs) or previously reported to be associated with statin response in genome-wide association studies results in a combined model that predicts 15.0% of the variance. Notably, a model of the signature gene associated eQTLs alone explains up to 17.2% of the variance in the tails of a separate subset of the Cholesterol and Pharmacogenetics population. Furthermore, using a support vector machine classification model, we classify the most extreme 15% of high and low responders with high accuracy. Conclusions: These results demonstrate that transcriptomic information can explain a substantial proportion of the variance in LDLC response to statin treatment, and suggest that this may provide a framework for identifying novel pathways that influence cholesterol metabolism.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials [J].
Baigent, C. ;
Blackwell, L. ;
Emberson, J. ;
Holland, L. E. ;
Reith, C. ;
Bhala, N. ;
Peto, R. ;
Barnes, E. H. ;
Keech, A. ;
Simes, J. ;
Collins, R. .
LANCET, 2010, 376 (9753) :1670-1681
[2]   Genome-Wide Association of Lipid-Lowering Response to Statins in Combined Study Populations [J].
Barber, Mathew J. ;
Mangravite, Lara M. ;
Hyde, Craig L. ;
Chasman, Daniel I. ;
Smith, Joshua D. ;
McCarty, Catherine A. ;
Li, Xiaohui ;
Wilke, Russell A. ;
Rieder, Mark J. ;
Williams, Paul T. ;
Ridker, Paul M. ;
Chatterjee, Aurobindo ;
Rotter, Jerome I. ;
Nickerson, Deborah A. ;
Stephens, Matthew ;
Krauss, Ronald M. .
PLOS ONE, 2010, 5 (03)
[3]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[4]   Genetic Determinants of Statin-Induced Low-Density Lipoprotein Cholesterol Reduction The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Trial [J].
Chasman, Daniel I. ;
Giulianini, Franco ;
MacFadyen, Jean ;
Barratt, Bryan J. ;
Nyberg, Fredrik ;
Ridker, Paul M. .
CIRCULATION-CARDIOVASCULAR GENETICS, 2012, 5 (02) :257-264
[5]   Pharmacogenetic study of statin therapy and cholesterol reduction [J].
Chasman, DI ;
Posada, D ;
Subrahmanyan, L ;
Cook, NR ;
Stanton, VP ;
Ridker, PM .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 291 (23) :2821-2827
[6]   Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool [J].
Chen, Edward Y. ;
Tan, Christopher M. ;
Kou, Yan ;
Duan, Qiaonan ;
Wang, Zichen ;
Meirelles, Gabriela Vaz ;
Clark, Neil R. ;
Ma'ayan, Avi .
BMC BIOINFORMATICS, 2013, 14
[7]   Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy [J].
Collisson, Eric A. ;
Sadanandam, Anguraj ;
Olson, Peter ;
Gibb, William J. ;
Truitt, Morgan ;
Gu, Shenda ;
Cooc, Janine ;
Weinkle, Jennifer ;
Kim, Grace E. ;
Jakkula, Lakshmi ;
Feiler, Heidi S. ;
Ko, Andrew H. ;
Olshen, Adam B. ;
Danenberg, Kathleen L. ;
Tempero, Margaret A. ;
Spellman, Paul T. ;
Hanahan, Douglas ;
Gray, Joe W. .
NATURE MEDICINE, 2011, 17 (04) :500-U140
[8]   Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a) [J].
Deshmukh, Harshal A. ;
Colhoun, Helen M. ;
Johnson, Toby ;
McKeigue, Paul M. ;
Betteridge, D. John ;
Durrington, Paul N. ;
Fuller, John H. ;
Livingstone, Shona ;
Charlton-Menys, Valentine ;
Neil, Andrew ;
Poulter, Neil ;
Sever, Peter ;
Shields, Denis C. ;
Stanton, Alice V. ;
Chatterjee, Aurobindo ;
Hyde, Craig ;
Calle, Roberto A. ;
DeMicco, David A. ;
Trompet, Stella ;
Postmus, Iris ;
Ford, Ian ;
Jukema, J. Wouter ;
Caulfield, Mark ;
Hitman, Graham A. .
JOURNAL OF LIPID RESEARCH, 2012, 53 (05) :1000-1011
[9]   Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology [J].
Devarajan, Karthik .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (07)
[10]   A paucimorphic variant in the HMO-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study [J].
Donnelly, Louise A. ;
Doney, Alex S. F. ;
Dannfald, Jennifer ;
Whitley, Adrian L. ;
Lang, Chim C. ;
Morris, Andrew D. ;
Donnan, Peter T. ;
Palmer, Colin N. A. .
PHARMACOGENETICS AND GENOMICS, 2008, 18 (12) :1021-1026