A complete probabilistic belief logic

被引:0
作者
Cao, Zining [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
来源
Computational Logic in Multi-Agent Systems | 2007年 / 4371卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the logic for reasoning about probabilistic belief, called PBLf. Our language includes formulas that essentially express "agent i believes that the probability of theta is at least p". We first provide an inference system of PBLf, and then introduce a probabilistic semantics for PBLf. The soundness and finite model property of PBLf are proven.
引用
收藏
页码:80 / 94
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4
[2]  
Bacchus F., 1990, REPRESENTING REASONI
[3]   REASONING ABOUT KNOWLEDGE AND PROBABILITY [J].
FAGIN, R ;
HALPERN, JY .
JOURNAL OF THE ACM, 1994, 41 (02) :340-367
[4]   A LOGIC FOR REASONING ABOUT PROBABILITIES [J].
FAGIN, R ;
HALPERN, JY ;
MEGIDDO, N .
INFORMATION AND COMPUTATION, 1990, 87 (1-2) :78-128
[5]  
Fagin R., 1995, Reasoning About Knowledge, DOI DOI 10.7551/MITPRESS/5803.001.0001
[6]  
FATTOROSIBARNAB.M, 1987, MODEL OPERATORS PROB, V46, P383
[7]   A DECIDABLE PROPOSITIONAL DYNAMIC LOGIC WITH EXPLICIT PROBABILITIES [J].
FELDMAN, YA .
INFORMATION AND CONTROL, 1984, 63 (1-2) :11-38
[8]  
FERREIRA ND, P JELIA04 LNAI, V3229, P82
[9]  
FERREIRA ND, P EPIA 05 LNAI, V3808, P536
[10]  
Halpern J. Y., 1991, Annals of Mathematics and Artificial Intelligence, V4, P301, DOI 10.1007/BF01531062