Structured polynomial eigenvalue problems: Good vibrations from good linearizations

被引:222
作者
Mackey, D. Steven
Mackey, Niloufer
Mehl, Christian
Mehrmann, Volker
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[2] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[3] Tech Univ Berlin, Inst Math, Sekretariat MA 4 5, D-10623 Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
nonlinear eigenvalue problem; palindromic matrix polynomial; even matrix polynomial; odd matrix polynomial; Cayley transformation; structured linearization; preservation of eigenvalue symmetry;
D O I
10.1137/050628362
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many applications give rise to nonlinear eigenvalue problems with an underlying structured matrix polynomial. In this paper several useful classes of structured polynomials (e.g., palindromic, even, odd) are identified and the relationships between them explored. A special class of linearizations which reflect the structure of these polynomials, and therefore preserve symmetries in their spectra, is introduced and investigated. We analyze the existence and uniqueness of such linearizations and show how they may be systematically constructed.
引用
收藏
页码:1029 / 1051
页数:23
相关论文
共 36 条
[1]  
Aboul-Enein H. Y, 2003, SYS CON FDN
[2]  
Anderson E, 1999, LAPACK USERS GUIDE
[3]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[4]   Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures [J].
Apel, T ;
Mehrmann, V ;
Watkins, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (39-40) :4459-4473
[5]  
Apel T., 2004, LONDON MATH SOC LECT, V312, P137
[6]   Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils [J].
Benner, P ;
Byers, R ;
Mehrmann, V ;
Xu, HG .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) :165-190
[7]  
CHU D, 242004 TU BERL I MAT
[8]  
Fassbender H., 2000, SYMPLECTIC METHODS S
[9]  
Gantmacher F. R., 1959, THEORY MATRICES, V2
[10]   General isospectral flows for linear dynamic systems [J].
Garvey, SD ;
Prells, U ;
Friswell, MI ;
Chen, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 :335-368