RPA and RAD51: fork reversal, fork protection, and genome stability

被引:248
|
作者
Bhat, Kamakoti P. [1 ]
Cortez, David [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37212 USA
关键词
REPLICATION PROTEIN-A; SINGLE-STRANDED-DNA; PROMOTES HOMOLOGOUS RECOMBINATION; ESCHERICHIA-COLI; BRCA2-DEFICIENT CELLS; MMS22L-TONSL COMPLEX; BINDING DOMAINS; REPAIR PROTEINS; NASCENT DNA; STRESS;
D O I
10.1038/s41594-018-0075-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Replication protein A (RPA) and RAD51 are DNA-binding proteins that help maintain genome stability during DNA replication. These proteins regulate nucleases, helicases, DNA translocases, and signaling proteins to control replication, repair, recombination, and the DNA damage response. Their different DNA-binding mechanisms, enzymatic activities, and binding partners provide unique functionalities that cooperate to ensure that the appropriate activities are deployed at the right time to overcome replication challenges. Here we review and discuss the latest discoveries of the mechanisms by which these proteins work to preserve genome stability, with a focus on their actions in fork reversal and fork protection.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [1] RPA and RAD51: fork reversal, fork protection, and genome stability
    Kamakoti P. Bhat
    David Cortez
    Nature Structural & Molecular Biology, 2018, 25 : 446 - 453
  • [2] RAD51 bypasses the CMG helicase to promote replication fork reversal
    Liu, Wenpeng
    Saito, Yuichiro
    Jackson, Jessica
    Bhowmick, Rahul
    Kanemaki, Masato T.
    Vindigni, Alessandro
    Cortez, David
    SCIENCE, 2023, 380 (6643) : 382 - +
  • [3] RADX Modulates RAD51 Activity to Control Replication Fork Protection
    Bhat, Kamakoti P.
    Krishnamoorthy, Archana
    Dungrawala, Huzefa
    Garcin, Edwige B.
    Modesti, Mauro
    Cortez, David
    CELL REPORTS, 2018, 24 (03): : 538 - 545
  • [4] Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability
    Graziano, Simona
    Coll-Bonfill, Nuria
    Teodoro-Castro, Barbara
    Kuppa, Sahiti
    Jackson, Jessica
    Shashkova, Elena
    Mahajan, Urvashi
    Vindigni, Alessandro
    Antony, Edwin
    Gonzalo, Susana
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 297 (05)
  • [5] RADX controls RAD51 filament dynamics to regulate replication fork stability
    Adolph, Madison B.
    Mohamed, Taha M.
    Balakrishnan, Swati
    Xue, Chaoyou
    Morati, Florian
    Modesti, Mauro
    Greene, Eric C.
    Chazin, Walter J.
    Cortez, David
    MOLECULAR CELL, 2021, 81 (05) : 1074 - 1083.e5
  • [6] Cooperation of RAD51 and RAD54 in regression of a model replication fork
    Bugreev, Dmitry V.
    Rossi, Matthew J.
    Mazin, Alexander V.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (06) : 2153 - 2164
  • [7] Rad51 replication fork recruitment is required for DNA damage tolerance
    Gonzalez-Prieto, Roman
    Munoz-Cabello, Ana M.
    Cabello-Lobato, Maria J.
    Prado, Felix
    EMBO JOURNAL, 2013, 32 (09): : 1307 - 1321
  • [8] RAD51 protects abasic sites to prevent replication fork breakage
    Hanthi, Yodhara Wijesekara
    Ramirez-Otero, Miguel Angel
    Appleby, Robert
    De Antoni, Anna
    Joudeh, Luay
    Sannino, Vincenzo
    Waked, Salli
    Ardizzoia, Alessandra
    Barra, Viviana
    Fachinetti, Daniele
    Pellegrini, Luca
    Costanzo, Vincenzo
    MOLECULAR CELL, 2024, 84 (16)
  • [9] Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection
    Zadorozhny, Karina
    Sannino, Vincenzo
    Belan, Ondrej
    Mlcouskova, Jarmila
    Spirek, Mario
    Costanzo, Vincenzo
    Krejci, Lumir
    CELL REPORTS, 2017, 21 (02): : 333 - 340
  • [10] Replication fork reversal and the maintenance of genome stability
    Atkinson, John
    McGlynn, Peter
    NUCLEIC ACIDS RESEARCH, 2009, 37 (11) : 3475 - 3492