共 38 条
ε-subgradient algorithms for bilevel convex optimization
被引:12
作者:
Helou, Elias S.
[1
]
Simoes, Lucas E. A.
[2
]
机构:
[1] Univ Sao Paulo, Dept Appl Math & Stat, Inst Math Sci & Computat, Sao Carlos, SP, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Campinas, SP, Brazil
基金:
巴西圣保罗研究基金会;
关键词:
epsilon-subgradient methods;
bilevel optimization;
tomographic image reconstruction;
LARGE UNDERDETERMINED SYSTEMS;
PROXIMAL POINT ALGORITHM;
GRADIENT METHODS;
MINIMIZATION;
CONVERGENCE;
TOMOGRAPHY;
EQUATIONS;
NORM;
D O I:
10.1088/1361-6420/aa6136
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper introduces and studies the convergence properties of a new class of explicit e-subgradient methods for the task of minimizing a convex function over a set of minimizers of another convex minimization problem. The general algorithm specializes to some important cases, such as first-order methods applied to a varying objective function, which have computationally cheap iterations. We present numerical experimentation concerning certain applications where the theoretical framework encompasses efficient algorithmic techniques, enabling the use of the resulting methods to solve very large practical problems arising in tomographic image reconstruction.
引用
收藏
页数:33
相关论文