On nonlinear coupled evolution system with nonlocal subsidiary conditions under fractal-fractional order derivative

被引:13
作者
Abdo, Mohammed S. [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
Shah, Kamal [5 ]
Ali, Saeed M. [6 ]
机构
[1] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[5] Univ Malakand, Dept Math, Chakdara, Pakistan
[6] Imam Abdulrahman Bin Faisal Univ, Coll Engn, Dept Basic Engn Sci, Dammam 34151, Saudi Arabia
关键词
Atangana‐ Baleanu derivative; evolution system; fractal‐ fractional derivative; fixed point theorem; Ulam‐ Hyers stability; DIFFERENTIAL-EQUATIONS; STABILITY; EXISTENCE; ATTRACTORS;
D O I
10.1002/mma.7210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the given paper, we develop and extend a qualitative analysis of a novel nonlinear system of fractional pantograph evolution differential equations (FPEDEs) involving fractal-fractional derivative in Atangana-Baleanu sense. To discuss the proposed problem, we establish the essential conditions for the existence and uniqueness results. The used arguments for the analysis are the fixed point techniques of Banach and Krasnoselskii. Moreover, the Ulam-Hyers stability of solutions for the system at hand is discussed. Two interesting pertinent examples are presented.
引用
收藏
页码:6581 / 6600
页数:20
相关论文
共 46 条
[1]   On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives [J].
Abdeljawad, Thabet ;
Jarad, Fahd ;
Baleanu, Dumitru .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (10) :1775-1786
[2]   Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2016,
[3]  
Abdo MS, 2020, J PSEUDO-DIFFER OPER, V11, P1757, DOI 10.1007/s11868-020-00355-x
[4]   Existence and Ulam stability results of a coupled system for terminal value problems involvingψ-Hilfer fractional operator [J].
Abdo, Mohammed S. ;
Shah, Kamal ;
Panchal, Satish K. ;
Wahash, Hanan A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[5]   Existence theory and numerical analysis of three species prey-predator model under Mittag-Leffler power law [J].
Abdo, Mohammed S. ;
Panchal, Satish K. ;
Shah, Kamal ;
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[6]   On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative [J].
Abdo, Mohammed S. ;
Shah, Kamal ;
Wahash, Hanan A. ;
Panchal, Satish K. .
CHAOS SOLITONS & FRACTALS, 2020, 135
[7]   Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India [J].
Abdulwasaa, Mansour A. ;
Abdo, Mohammed S. ;
Shah, Kamal ;
Nofal, Taher A. ;
Panchal, Satish K. ;
Kawale, Sunil V. ;
Abdel-Aty, Abdel-Haleem .
RESULTS IN PHYSICS, 2021, 20
[8]   A survey on fuzzy fractional differential and optimal control nonlocal evolution equations [J].
Agarwal, Ravi P. ;
Baleanu, Dumitru ;
Nieto, Juan J. ;
Torres, Delfim F. M. ;
Zhou, Yong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 :3-29
[9]   QUALITATIVE STUDY OF NONLINEAR COUPLED PANTOGRAPH DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER [J].
Ahamad, Israr ;
Shah, Kamal ;
Abdeljawad, Thabet ;
Jarad, Fahd .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
[10]   On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2016, 83 :234-241