Isochronous Partitions for Region-Based Self-Triggered Control

被引:10
作者
Delimpaltadakis, Giannis [1 ]
Mazo, Manuel, Jr. [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
关键词
Manifolds; Nonlinear systems; Current measurement; Time measurement; Stability analysis; Aerospace electronics; Approximation algorithms; Digital control; networked control systems; nonlinear control systems;
D O I
10.1109/TAC.2020.2994020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a region-based self-triggered control (STC) scheme for nonlinear systems. The state space is partitioned into a finite number of regions, each of which is associated to a uniform interevent time. The controller, at each sampling time instant, checks to which region does the current state belong, and correspondingly decides the next sampling time instant. To derive the regions along with their corresponding interevent times, we use approximations of isochronous manifolds, a notion first introduced in Anta and Tabuada (2012). This article addresses some theoretical issues of Anta and Tabuada (2012) and proposes an effective computational approach that generates approximations of isochronous manifolds, thus enabling the region-based STC scheme. The efficiency of both our theoretical results and the proposed algorithm is demonstrated through simulation examples.
引用
收藏
页码:1160 / 1173
页数:14
相关论文
共 34 条
[1]   Exploiting Isochrony in Self-Triggered Control [J].
Anta, Adolfo ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) :950-962
[2]   To Sample or not to Sample: Self-Triggered Control for Nonlinear Systems [J].
Anta, Adolfo ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (09) :2030-2042
[3]  
Arzen K.-E., 1999, Proceedings of the 14th World Congress. International Federation of Automatic Control, P423
[4]   A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems [J].
Carnevale, Daniele ;
Teel, Andrew R. ;
Nesic, Dragan .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :892-897
[5]   Digital self-triggered robust control of nonlinear systems [J].
Di Benedetto, M. D. ;
Di Gennaro, S. ;
D'Innocenzo, A. .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (09) :1664-1672
[6]   A state dependent sampling for linear state feedback [J].
Fiter, Christophe ;
Hetel, Laurentiu ;
Perruquetti, Wilfrid ;
Richard, Jean-Pierre .
AUTOMATICA, 2012, 48 (08) :1860-1867
[7]   Dynamic Triggering Mechanisms for Event-Triggered Control [J].
Girard, Antoine .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (07) :1992-1997
[8]   Self-triggered linear quadratic control [J].
Gommans, Tom ;
Antunes, Duarte ;
Donkers, Tijs ;
Tabuada, Paulo ;
Heemels, Maurice .
AUTOMATICA, 2014, 50 (04) :1279-1287
[9]   COMPARISON LEMMA FOR HIGHER ORDER TRAJECTORY DERIVATIVES [J].
GUNDERSON, RW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 27 (03) :543-+
[10]  
Heemels WPMH, 2012, IEEE DECIS CONTR P, P3270, DOI 10.1109/CDC.2012.6425820