Motion field interpolation for temporal error concealment

被引:20
作者
Al-Mualla, ME [1 ]
Canagarajah, CN [1 ]
Bull, DR [1 ]
机构
[1] Univ Bristol, Commun Res Ctr, Image Commun Grp, Bristol BS8 1UB, Avon, England
来源
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING | 2000年 / 147卷 / 05期
基金
中国国家自然科学基金;
关键词
D O I
10.1049/ip-vis:20000385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When transmitted over practical communication channels, compressed video can suffer severe degradation. One approach to combat the effect of channel errors is error concealment. It is an attractive choice because it does not increase the bit rate: it does not require any modifications to the encoder, it does not introduce any delays and it can be applied in almost any application. Conventional temporal concealment techniques estimate one concealment displacement for the whole damaged block and then use translational displacement compensation to conceal the block from a reference frame. The main problem with such techniques is that incorrect estimation of the concealment displacement can lead to poor concealment of the whole or most of the block. Two novel temporal concealment techniques are presented. In the first technique, motion field interpolation is used to estimate one concealment displacement per pel of the damaged block and then each pel is concealed individually. In this case, incorrect estimation of a concealment displacement will only affect the corresponding pel. On a block level this may affect few pels rather than the entire block. Ln the second technique, multi-hypothesis motion compensation is used to combine the first technique with a boundary matching temporal concealment technique to obtain a more robust performance. Simulation results, within both an isolated error propagation environment and an H.263 codec, show the superior subjective and objective performance of the proposed techniques when compared with conventional temporal concealment techniques.
引用
收藏
页码:445 / 453
页数:9
相关论文
共 14 条
[1]   Temporal error concealment using motion field interpolation [J].
Al-Mualla, M ;
Canagarajah, N ;
Bull, DR .
ELECTRONICS LETTERS, 1999, 35 (03) :215-217
[2]  
Al-Mualla ME, 1998, 1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, P512, DOI 10.1109/ICIP.1998.999039
[3]   Error concealment of lost motion vectors with overlapped motion compensation [J].
Chen, MJ ;
Chen, LG ;
Weng, RM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1997, 7 (03) :560-563
[4]   Efficiency analysis of multihypothesis motion-compensated prediction for video coding [J].
Girod, B .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (02) :173-183
[5]  
KANG KW, 1995, P SOC PHOTO-OPT INS, V2501, P19, DOI 10.1117/12.206743
[6]  
LAM WM, 1993, P ICASSP, V5, P417
[7]  
NARULA A, 1993, P SOC PHOTO-OPT INS, V2094, P304, DOI 10.1117/12.157949
[8]   TEMPORAL IMAGE SEQUENCE PREDICTION USING MOTION FIELD INTERPOLATION [J].
NIEWEGLOWSKI, J ;
HAAVISTO, P .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 1995, 7 (4-6) :333-353
[9]  
NOSRATINIA A, UNPUB IEEE T CIRCUIT
[10]   MPEG-4 video subjective test procedures and results [J].
Pereira, F ;
Alpert, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1997, 7 (01) :32-51