A wavelet-based tool for studying non-periodicity

被引:85
作者
Benitez, R. [1 ]
Bolos, V. J. [2 ]
Ramirez, M. E.
机构
[1] Univ Extremadura, Dpto Matemat, Plasencia 10600, Caceres, Spain
[2] Univ Valencia, Dpto Matemat Econ & Empresa, E-46003 Valencia, Spain
关键词
Non-periodicity; Wavelets; Chaotic dynamical systems; DUFFING OSCILLATOR; BONHOEFFER-VAN; TIME-SERIES; BIFURCATIONS;
D O I
10.1016/j.camwa.2010.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new numerical approach to the study of non-periodicity in signals, which can complement the maximal Lyapunov exponent method for determining chaos transitions of a given dynamical system. The proposed technique is based on the continuous wavelet transform and the wavelet multiresolution analysis. A new parameter, the scale index, is introduced and interpreted as a measure of the degree of the signal's non-periodicity. This methodology is successfully applied to three classical dynamical systems: the Bonhoeffer-van der Pol oscillator, the logistic map, and the Henon map. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:634 / 641
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[2]   Thermodynamics of fractal signals based on wavelet analysis: application to fully developed turbulence data and DNA sequences [J].
Arneodo, A ;
Audit, B ;
Bacry, E ;
Manneville, S ;
Muzy, JF ;
Roux, SG .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 254 (1-2) :24-45
[3]  
Barnett W. A., 1992, Annals of Operations Research, V37, P1, DOI 10.1007/BF02071045
[4]   Invariant manifolds of the Bonhoeffer-van der Pol oscillator [J].
Benitez, R. ;
Bolos, V. J. .
CHAOS SOLITONS & FRACTALS, 2009, 40 (05) :2170-2180
[5]  
BOHR H., 1947, Almost Periodic Functions
[6]  
Chan Tony F., 2005, IMAGE PROCESSING ANA
[7]   Time-frequency analysis of chaotic systems [J].
Chandre, C ;
Wiggins, S ;
Uzer, T .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (3-4) :171-196
[8]  
DONALD BP, 2000, WAVELET METHODS TIME
[9]   Analysis of cardiac signals using spatial filling index and time-frequency domain [J].
Faust, Oliver ;
Acharya, Rajendra U. ;
Krishnan, S. M. ;
Min, Lim Choo .
BIOMEDICAL ENGINEERING ONLINE, 2004, 3 (1)
[10]  
Guckenheimer J., 2013, J APPL MECH, P475, DOI [10.1098/rsif.2013.0237, DOI 10.1115/1.3167759]