Rotating neurons for all-analog implementation of cyclic reservoir computing

被引:94
作者
Liang, Xiangpeng [1 ,2 ]
Zhong, Yanan [1 ,3 ]
Tang, Jianshi [1 ,4 ]
Liu, Zhengwu [1 ]
Yao, Peng [1 ]
Sun, Keyang [1 ]
Zhang, Qingtian [1 ,4 ]
Gao, Bin [1 ,4 ]
Heidari, Hadi [2 ]
Qian, He [1 ,4 ]
Wu, Huaqiang [1 ,4 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Sch Integrated Circuits, Beijing 100084, Peoples R China
[2] Univ Glasgow, James Watt Sch Engn, Microelect Lab, Glasgow G12 8QQ, Lanark, Scotland
[3] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[4] Tsinghua Univ, Beijing Innovat Ctr Future Chips ICFC, Beijing 100084, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
NOISE;
D O I
10.1038/s41467-022-29260-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hardware implementation in resource-efficient reservoir computing is of great interest for neuromorphic engineering. Recently, various devices have been explored to implement hardware-based reservoirs. However, most studies were mainly focused on the reservoir layer, whereas an end-to-end reservoir architecture has yet to be developed. Here, we propose a versatile method for implementing cyclic reservoirs using rotating elements integrated with signal-driven dynamic neurons, whose equivalence to standard cyclic reservoir algorithm is mathematically proven. Simulations show that the rotating neuron reservoir achieves record-low errors in a nonlinear system approximation benchmark. Furthermore, a hardware prototype was developed for near-sensor computing, chaotic time-series prediction and handwriting classification. By integrating a memristor array as a fully-connected output layer, the all-analog reservoir computing system achieves 94.0% accuracy, while simulation shows >1000x lower system-level power than prior works. Therefore, our work demonstrates an elegant rotation-based architecture that explores hardware physics as computational resources for high-performance reservoir computing. Reservoir computing has demonstrated high-level performance, however efficient hardware implementations demand an architecture with minimum system complexity. The authors propose a rotating neuron-based architecture for physically implementing all-analog resource efficient reservoir computing system.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Efficient parallel implementation of reservoir computing systems [J].
Alomar, M. L. ;
Skibinsky-Gitlin, Erik S. ;
Frasser, Christiam F. ;
Canals, Vincent ;
Isern, Eugeni ;
Roca, Miquel ;
Rossello, Josep L. .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (07) :2299-2313
[2]   Digital Implementation of a Single Dynamical Node Reservoir Computer [J].
Alomar, Miquel L. ;
Soriano, Miguel C. ;
Escalona-Moran, Miguel ;
Canals, Vincent ;
Fischer, Ingo ;
Mirasso, Claudio R. ;
Rossello, Jose L. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (10) :977-981
[3]  
[Anonymous], 2001, ECHO STATE APPROACH
[4]  
[Anonymous], 2012, THESIS
[5]   Human action recognition with a large-scale brain-inspired photonic computer [J].
Antonik, Piotr ;
Marsal, Nicolas ;
Brunner, Daniel ;
Rontani, Damien .
NATURE MACHINE INTELLIGENCE, 2019, 1 (11) :530-537
[6]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[7]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[8]   Adaptive Extreme Edge Computing for Wearable Devices [J].
Covi, Erika ;
Donati, Elisa ;
Liang, Xiangpeng ;
Kappel, David ;
Heidari, Hadi ;
Payvand, Melika ;
Wang, Wei .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[9]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Fully analogue photonic reservoir computer [J].
Duport, Francois ;
Smerieri, Anteo ;
Akrout, Akram ;
Haelterman, Marc ;
Massar, Serge .
SCIENTIFIC REPORTS, 2016, 6