Random matrix ensembles with random interactions: Results for EGUE(2)-SU(4)

被引:1
作者
Vyas, Manan [1 ]
Kota, V. K. B. [1 ,2 ]
机构
[1] Phys Res Lab, Ahmadabad 380009, Gujarat, India
[2] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada
来源
PRAMANA-JOURNAL OF PHYSICS | 2009年 / 73卷 / 03期
关键词
Embedded ensembles; random interactions; EGUE(2); EGUE(2)-s; EGUE(2)-SU(4); Wigner-Racah algebra; covariances; chaos; NUCLEAR SHELL-MODEL; COLLECTIVE MOTION; SYMMETRY; CHAOS; SPIN; CLASSIFICATION; ISOSPIN; STATES;
D O I
10.1007/s12043-009-0104-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for m fermions in Omega number of single particle orbits, generated by random two-body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner's supermultiplet SU(4) symmetry in nuclei. Formulation based on Wigner-Racah algebra of the embedding algebra U(4 Omega) superset of U(Omega) circle times SU(4) allows for analytical treatment of this ensemble and using this analytical formulas are derived for the covariances in energy centroids and spectral variances. It is found that these covariances increase in magnitude as we go from EGUE(2) to EGUE(2)-s to EGUE(2)-SU(4) implying that symmetries may be responsible for chaos in finite interacting quantum systems.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 25 条