Hyperspherical Variational Auto-Encoders

被引:0
作者
Davidson, Tim R. [1 ]
Falorsi, Luca [1 ]
De Cao, Nicola [1 ]
Kipf, Thomas [1 ]
Tomczak, Jakub M. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or S-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, N-VAE, in low dimensions on other data types.
引用
收藏
页码:856 / 865
页数:10
相关论文
共 50 条
[41]   Attribute-based regularization of latent spaces for variational auto-encoders [J].
Pati, Ashis ;
Lerch, Alexander .
Neural Computing and Applications, 2021, 33 (09) :4429-4444
[42]   Attribute-based regularization of latent spaces for variational auto-encoders [J].
Ashis Pati ;
Alexander Lerch .
Neural Computing and Applications, 2021, 33 :4429-4444
[43]   An Efficient Antenna Decoupling Optimization Method Using Variational Auto-Encoders [J].
Huang, Hao ;
Yang, Xue-Song .
2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, :2007-2008
[44]   Directed Graph Auto-Encoders [J].
Kollias, Georgios ;
Kalantzis, Vasileios ;
Ide, Tsuyoshi ;
Lozano, Aurelie ;
Abe, Naoki .
THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, :7211-7219
[45]   Graph Attention Auto-Encoders [J].
Salehi, Amin ;
Davulcu, Hasan .
2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, :989-996
[46]   Conservativeness of Untied Auto-Encoders [J].
Im, Daniel Jiwoong ;
Belghazi, Mohamed Ishmael ;
Memisevic, Roland .
THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, :1694-1700
[47]   Isometric Quotient Variational Auto-Encoders for Structure-Preserving Representation Learning [J].
Huh, In ;
Jeong, Changwook ;
Choe, Jae Myung ;
Kim, Young-Gu ;
Kim, Dae Sin .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
[48]   Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains [J].
Ruiz, Francisco J. R. ;
Titsias, Michalis K. ;
Cemgil, Taylan ;
Doucet, Arnaud .
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 161, 2021, 161 :707-717
[49]   Reconstruction probability-based anomaly detection using variational auto-encoders [J].
Iqbal T. ;
Qureshi S. .
International Journal of Computers and Applications, 2023, 45 (03) :231-237
[50]   Audio-Visual Speech Enhancement Using Conditional Variational Auto-Encoders [J].
Sadeghi, Mostafa ;
Leglaive, Simon ;
Alameda-Pineda, Xavier ;
Girin, Laurent ;
Horaud, Radu .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 :1788-1800