Hyperspherical Variational Auto-Encoders

被引:0
|
作者
Davidson, Tim R. [1 ]
Falorsi, Luca [1 ]
De Cao, Nicola [1 ]
Kipf, Thomas [1 ]
Tomczak, Jakub M. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or S-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, N-VAE, in low dimensions on other data types.
引用
收藏
页码:856 / 865
页数:10
相关论文
共 50 条
  • [31] Adversarial Training of Variational Auto-encoders for High Fidelity Image Generation
    Khan, Salman H.
    Hayat, Munawar
    Barnes, Nick
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1312 - 1320
  • [32] Attribute-based regularization of latent spaces for variational auto-encoders
    Pati, Ashis
    Lerch, Alexander
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4429 - 4444
  • [33] Dynamic Feature Collaborative Variational Auto-Encoders for Academic Paper Recommendation
    Niu, Yuanhao
    Jiang, Ting
    Chen, Zhiheng
    Bai, Weichen
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1620 - 1627
  • [34] Towards Deeper Understanding of Variational Auto-encoders for Binary Collaborative Filtering
    Zamani, Siamak
    Li, Dingcheng
    Fei, Hongliang
    Li, Ping
    PROCEEDINGS OF THE 2022 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2022, 2022, : 175 - 184
  • [35] Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders
    Van Steenkiste, Tom
    Deschrijver, Dirk
    Dhaene, Tom
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 373 - 378
  • [36] FMCW Radar Sensing for Indoor Drones Using Variational Auto-Encoders
    Safa, Ali
    Verbelen, Tim
    Catal, Ozan
    Van de Maele, Toon
    Hartmann, Matthias
    Dhoedt, Bart
    Bourdoux, Andre
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [37] Disentangling Factors of Variation with Cycle-Consistent Variational Auto-encoders
    Jha, Ananya Harsh
    Anand, Saket
    Singh, Maneesh
    Veeravasarapu, V. S. R.
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 829 - 845
  • [38] Attribute-based regularization of latent spaces for variational auto-encoders
    Pati, Ashis
    Lerch, Alexander
    Neural Computing and Applications, 2021, 33 (09) : 4429 - 4444
  • [39] Variational graph auto-encoders for miRNA-disease association prediction
    Ding, Yulian
    Tian, Li-Ping
    Lei, Xiujuan
    Liao, Bo
    Wu, Fang-Xiang
    METHODS, 2021, 192 : 25 - 34
  • [40] Attribute-based regularization of latent spaces for variational auto-encoders
    Ashis Pati
    Alexander Lerch
    Neural Computing and Applications, 2021, 33 : 4429 - 4444