Hyperspherical Variational Auto-Encoders

被引:0
作者
Davidson, Tim R. [1 ]
Falorsi, Luca [1 ]
De Cao, Nicola [1 ]
Kipf, Thomas [1 ]
Tomczak, Jakub M. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or S-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, N-VAE, in low dimensions on other data types.
引用
收藏
页码:856 / 865
页数:10
相关论文
共 50 条
[31]   Adversarial Training of Variational Auto-encoders for High Fidelity Image Generation [J].
Khan, Salman H. ;
Hayat, Munawar ;
Barnes, Nick .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :1312-1320
[32]   Micro and Macro Level Graph Modeling for Graph Variational Auto-Encoders [J].
Zahirnia, Kiarash ;
Schulte, Oliver ;
Naddaf, Parmis ;
Li, Ke .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
[33]   Variational Auto-encoders application in wireless Vehicle-to-Everything communications [J].
Hamdan, Mutasem Q. ;
Hamdi, Khairi A. .
2020 IEEE 91ST VEHICULAR TECHNOLOGY CONFERENCE, VTC2020-SPRING, 2020,
[34]   Attribute-based regularization of latent spaces for variational auto-encoders [J].
Pati, Ashis ;
Lerch, Alexander .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09) :4429-4444
[35]   Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders [J].
Van Steenkiste, Tom ;
Deschrijver, Dirk ;
Dhaene, Tom .
2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, :373-378
[36]   Towards Deeper Understanding of Variational Auto-encoders for Binary Collaborative Filtering [J].
Zamani, Siamak ;
Li, Dingcheng ;
Fei, Hongliang ;
Li, Ping .
PROCEEDINGS OF THE 2022 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2022, 2022, :175-184
[37]   Dynamic Feature Collaborative Variational Auto-Encoders for Academic Paper Recommendation [J].
Niu, Yuanhao ;
Jiang, Ting ;
Chen, Zhiheng ;
Bai, Weichen .
PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, :1620-1627
[38]   FMCW Radar Sensing for Indoor Drones Using Variational Auto-Encoders [J].
Safa, Ali ;
Verbelen, Tim ;
Catal, Ozan ;
Van de Maele, Toon ;
Hartmann, Matthias ;
Dhoedt, Bart ;
Bourdoux, Andre .
2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
[39]   Disentangling Factors of Variation with Cycle-Consistent Variational Auto-encoders [J].
Jha, Ananya Harsh ;
Anand, Saket ;
Singh, Maneesh ;
Veeravasarapu, V. S. R. .
COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 :829-845
[40]   Variational graph auto-encoders for miRNA-disease association prediction [J].
Ding, Yulian ;
Tian, Li-Ping ;
Lei, Xiujuan ;
Liao, Bo ;
Wu, Fang-Xiang .
METHODS, 2021, 192 :25-34