Hyperspherical Variational Auto-Encoders

被引:0
作者
Davidson, Tim R. [1 ]
Falorsi, Luca [1 ]
De Cao, Nicola [1 ]
Kipf, Thomas [1 ]
Tomczak, Jakub M. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or S-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, N-VAE, in low dimensions on other data types.
引用
收藏
页码:856 / 865
页数:10
相关论文
共 50 条
[21]   Time-sequential variational conditional auto-encoders for recommendation [J].
Hozumi J. ;
Iwasawa Y. ;
Matsuo Y. .
1600, Japanese Society for Artificial Intelligence (36)
[22]   Description Generation Using Variational Auto-Encoders for Precursor microRNA [J].
Petkovic, Marko ;
Menkovski, Vlado .
ENTROPY, 2024, 26 (11)
[23]   Ensemble kalman variational objective: a variational inference framework for sequential variational auto-encoders [J].
Ishizone, Tsuyoshi ;
Higuchi, Tomoyuki ;
Nakamura, Kazuyuki .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2023, 14 (04) :691-717
[24]   Understanding Instance-based Interpretability of Variational Auto-Encoders [J].
Kong, Zhifeng ;
Chaudhuri, Kamalika .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
[25]   Generation and Extraction of Color Palettes with Adversarial Variational Auto-Encoders [J].
Moussa, Ahmad ;
Watanabe, Hiroshi .
PROCEEDINGS OF SIXTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICICT 2021), VOL 2, 2022, 236 :889-897
[26]   Learning Generative Factors of EEG Data with Variational Auto-Encoders [J].
Zhdanov, Maksim ;
Steinmann, Saskia ;
Hoffmann, Nico .
DEEP GENERATIVE MODELS, DGM4MICCAI 2022, 2022, 13609 :45-54
[27]   Transforming Auto-Encoders [J].
Hinton, Geoffrey E. ;
Krizhevsky, Alex ;
Wang, Sida D. .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 :44-51
[28]   On Disentanglement and Mutual Information in Semi-Supervised Variational Auto-Encoders [J].
Gordon Rodriguez, Elliott .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :1257-1262
[29]   VARIATIONAL AUTO-ENCODERS WITHOUT GRAPH COARSENING FOR FINE MESH LEARNING [J].
Vercheval, Nicolas ;
De Bie, Hendrik ;
Pizurica, Aleksandra .
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, :2681-2685
[30]   Unsupervised Phonocardiogram Analysis With Distribution Density Based Variational Auto-Encoders [J].
Li, Shengchen ;
Tian, Ke .
FRONTIERS IN MEDICINE, 2021, 8