Hyperspherical Variational Auto-Encoders

被引:0
|
作者
Davidson, Tim R. [1 ]
Falorsi, Luca [1 ]
De Cao, Nicola [1 ]
Kipf, Thomas [1 ]
Tomczak, Jakub M. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or S-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, N-VAE, in low dimensions on other data types.
引用
收藏
页码:856 / 865
页数:10
相关论文
共 50 条
  • [1] Correlated Variational Auto-Encoders
    Tang, Da
    Liang, Dawen
    Jebara, Tony
    Ruozzi, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [2] Monte Carlo Variational Auto-Encoders
    Thin, Achille
    Kotelevskii, Nikita
    Durmus, Alain
    Panov, Maxim
    Moulines, Eric
    Doucet, Arnaud
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7258 - 7267
  • [3] Consistency Regularization for Variational Auto-Encoders
    Sinha, Samarth
    Dieng, Adji B.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Radon-Sobolev Variational Auto-Encoders
    Turinici, Gabriel
    NEURAL NETWORKS, 2021, 141 : 294 - 305
  • [5] Genomic data imputation with variational auto-encoders
    Qiu, Yeping Lina
    Zheng, Hong
    Gevaert, Olivier
    GIGASCIENCE, 2020, 9 (08):
  • [6] Self-Supervised Variational Auto-Encoders
    Gatopoulos, Ioannis
    Tomczak, Jakub M.
    ENTROPY, 2021, 23 (06)
  • [7] InvMap and Witness Simplicial Variational Auto-Encoders
    Medbouhi, Aniss Aiman
    Polianskii, Vladislav
    Varava, Anastasia
    Kragic, Danica
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 199 - 236
  • [8] Automatic selection of latent variables in variational auto-encoders
    Jouffroy, Emma
    Giremus, Audrey
    Berthoumieu, Yannick
    Bach, Olivier
    Hugget, Alain
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1407 - 1411
  • [9] Discriminative regularization of the latent manifold of variational auto-encoders
    Kossyk, Ingo
    Marton, Zoltan-Csaba
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 61 : 121 - 129
  • [10] Unsupervised Blind Source Separation with Variational Auto-Encoders
    Neri, Julian
    Badeau, Roland
    Depalle, Philippe
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 311 - 315