Fractional-Order LQR and State Observer for a Fractional-Order Vibratory System

被引:7
作者
Takeshita, Akihiro [1 ]
Yamashita, Tomohiro [1 ]
Kawaguchi, Natsuki [1 ]
Kuroda, Masaharu [1 ]
机构
[1] Univ Hyogo, Grad Sch Engn, Dept Mech Engn, 2167 Shosha, Himeji, Hyogo 6712280, Japan
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 07期
关键词
vibration; control; fractional calculus; linear quadratic regulator (LQR); algebraic Riccati equation; iteration; state observer; viscoelasticity; PID CONTROLLER; EXPERIMENTAL VALIDATION; TIME IMPLEMENTATION; AUTOTUNING METHOD; PD CONTROLLER; DESIGN; ALGORITHM; SUPPRESSION;
D O I
10.3390/app11073252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present study uses linear quadratic regulator (LQR) theory to control a vibratory system modeled by a fractional-order differential equation. First, as an example of such a vibratory system, a viscoelastically damped structure is selected. Second, a fractional-order LQR is designed for a system in which fractional-order differential terms are contained in the equation of motion. An iteration-based method for solving the algebraic Riccati equation is proposed in order to obtain the feedback gains for the fractional-order LQR. Third, a fractional-order state observer is constructed in order to estimate the states originating from the fractional-order derivative term. Fourth, numerical simulations are presented using a numerical calculation method corresponding to a fractional-order state equation. Finally, the numerical simulation results demonstrate that the fractional-order LQR control can suppress vibrations occurring in the vibratory system with viscoelastic damping.
引用
收藏
页数:20
相关论文
共 37 条
[1]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[2]   Preliminary results and simulation of an active pendulum system for a three floor building [J].
Birs, Isabela ;
Folea, Silviu ;
Ionescu, Florina ;
Prodan, Ovidiu ;
Muresan, Cristina .
X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 :1647-1652
[3]   Structural vibration attenuation using a fractional order PD controller designed for a fractional order process [J].
Birs, Isabela R. ;
Muresan, Cristina I. ;
Prodan, Ovidiu ;
Folea, Silviu C. ;
Ionescu, Clara .
IFAC PAPERSONLINE, 2018, 51 (04) :533-538
[4]   Comparative analysis and exprimental results of advanced control strategies for vibration suppression in aircraft wings [J].
Birs, Isabela R. ;
Folea, Silviu ;
Copot, Dana ;
Prodan, Ovidiu ;
Muresan, Cristina-I. .
13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
[5]  
Birs IR, 2016, IEEE INT CONF AUTO, P413
[6]   Multivariable Fractional Order PI Autotuning Method for Heterogeneous Dynamic Systems [J].
Cajo, Ricardo ;
Muresan, Cristina I. ;
Ionescu, Clara M. ;
De Keyser, Robin ;
Plaza, Douglas .
IFAC PAPERSONLINE, 2018, 51 (04) :865-870
[7]   Fractional Order Control - A Tutorial [J].
Chen, YangQuan ;
Petras, Ivo ;
Xue, Dingyue .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :1397-+
[8]   Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II [J].
Chen, Zhihuan ;
Yuan, Xiaohui ;
Ji, Bin ;
Wang, Pengtao ;
Tian, Hao .
ENERGY CONVERSION AND MANAGEMENT, 2014, 84 :390-404
[9]  
Dadras S, 2012, PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, P403
[10]   LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index [J].
Das, Saptarshi ;
Pan, Indranil ;
Halder, Kaushik ;
Das, Shantanu ;
Gupta, Amitava .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) :4253-4268