Seawater-based electrolyte for zinc-air batteries

被引:36
|
作者
Yu, Jia [1 ]
Zhao, Chang-Xin [1 ]
Liu, Jia-Ning [1 ]
Li, Bo-Quan [2 ,3 ]
Tang, Cheng [4 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[4] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Zinc -air batteries; Seawater -based electrolytes; Oxygen reduction reaction; Electrocatalysis; OXYGEN REDUCTION REACTION; SEA-WATER BATTERY; CHLORINE EVOLUTION; CATALYST; ELECTROCATALYSIS; EFFICIENT; CATHODE; SULFUR;
D O I
10.1016/j.gce.2020.09.013
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Aqueous zinc-air batteries (ZABs) are highly regarded as a promising electrochemical energy storage device owing to high energy density, low cost, and intrinsic safety. The employment of seawater to replace the currently used deionized water in electrolyte will bring great economic benefits and broaden the application occasions of ZABs. However, ZABs using seawater-based electrolyte remain uninvestigated without an applicable cathode electrocatalyst or a successful battery prototype. Herein, seawater-based electrolyte is successfully employed in ZABs with satisfactory performances. The influence of chloride anions on the cathode electrocatalytic reactivity and battery performance is systemically investigated. Both noble-metal-based and noble-metal-free electro-catalysts are applicable to the chloride-containing alkaline electrolyte. Further evaluation of ZABs with seawater -based electrolyte demonstrates comparable battery performances with the conventional electrolyte in terms of polarization, capacity, and rate performance. This study demonstrates a successful prototype of seawater-based ZABs and enlightens the utilization of natural resources for clean and sustainable energy storage.
引用
收藏
页码:117 / 123
页数:7
相关论文
共 50 条
  • [31] A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries
    Liu, Jia-Ning
    Li, Bo-Quan
    Zhao, Chang-Xin
    Yu, Jia
    Zhang, Qiang
    CHEMSUSCHEM, 2020, 13 (06) : 1529 - 1536
  • [32] Enhancing Oxygen Reduction Reaction Performance Through Abundant Single Fe Atoms for Advanced Zinc-Air Batteries
    Wu, Zirui
    Hu, Tieyu
    Fan, Zihui
    Wang, Yongying
    Li, Yi
    Yang, Juan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 13 (01): : 333 - 342
  • [33] Interface Engineering of Air Electrocatalysts for Rechargeable Zinc-Air Batteries
    Luo, Minghe
    Sun, Wenping
    Xu, Ben Bin
    Pan, Hongge
    Jiang, Yinzhu
    ADVANCED ENERGY MATERIALS, 2021, 11 (04)
  • [34] Seawater electrolyte-based metal-air batteries: from strategies to applications
    Yu, Jia
    Li, Bo-Quan
    Zhao, Chang-Xin
    Zhang, Qiang
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3253 - 3268
  • [35] Effect of Electrolyte Concentration and Depth of Discharge for Zinc-Air Fuel Cell
    Li, Guanghua
    Zhang, Ke
    Mezaal, Mohammed Adnan
    Zhang, Rui
    Lei, Lixu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (08): : 6672 - 6683
  • [36] A Room-Temperature Molten Hydrate Electrolyte for Rechargeable Zinc-Air Batteries
    Chen, Chih-Yao
    Matsumoto, Kazuhiko
    Kubota, Keigo
    Hagiwara, Rika
    Xu, Qiang
    ADVANCED ENERGY MATERIALS, 2019, 9 (22)
  • [37] Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries
    Kim, Hui Seo
    Lee, Dong Yun
    Jo, Yong Nam
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (12): : 550 - 557
  • [38] A review on the modification strategies of transition metal based bifunctional electrocatalysts for air-cathode in zinc-air batteries
    Zahra, Kalsoom
    Noor, Tayyaba
    Iqbal, Naseem
    Akbar, Noreen Sher
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [39] Recent progress of electrolytes and electrocatalysts in neutral aqueous zinc-air batteries
    Wu, Wei -Fan
    Yan, Xingbin
    Zhan, Yi
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [40] Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries
    Chen, Xuncai
    Zhou, Zheng
    Karahan, Huseyin Enis
    Shao, Qian
    Wei, Li
    Chen, Yuan
    SMALL, 2018, 14 (44)