An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas

被引:166
作者
Li, Guanzhang [1 ]
Li, Lin [2 ]
Li, Yiming [1 ]
Qian, Zenghui [1 ]
Wu, Fan [3 ]
He, Yufei [2 ]
Jiang, Haoyu [1 ]
Li, Renpeng [1 ]
Wang, Di [1 ]
Zhai, You [3 ]
Wang, Zhiliang [1 ]
Jiang, Tao [1 ,3 ,4 ,5 ,6 ,7 ]
Zhang, Jing [2 ]
Zhang, Wei [1 ,3 ,5 ,6 ,7 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, 119 South Fourth Ring Rd West, Beijing 100070, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Engn Med, Sch Biol Sci & Med Engn,Minist Educ,Lab Biomech &, Beijing 100083, Peoples R China
[3] Capital Med Univ, Beijing Neurosurg Inst, Dept Mol Neuropathol, Beijing 100070, Peoples R China
[4] Beijing Inst Brain Disorders, Ctr Brain Tumor, Beijing 100070, Peoples R China
[5] China Natl Clin Res Ctr Neurol Dis, Beijing 100070, Peoples R China
[6] Chinese Glioma Genome Atlas Network, Beijing, Peoples R China
[7] Asian Glioma Genome Atlas Network, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
prognostic prediction; macrophage; radiomic; machine learning; glioma; LOWER-GRADE GLIOMAS; FEATURES; TEMOZOLOMIDE; LANDSCAPE; SIGNATURE; MUTATION; BENEFIT; REVEAL;
D O I
10.1093/brain/awab340
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Using pre-operative T2-weighted MRI from a large cohort of glioma patients, Li et al. develop a radiomics model that shows robust predictive power for overall survival. The model reveals associations between radiomic and molecular features, particularly tumour macrophage infiltration. Preoperative MRI is one of the most important clinical results for the diagnosis and treatment of glioma patients. The objective of this study was to construct a stable and validatable preoperative T-2-weighted MRI-based radiomics model for predicting the survival of gliomas. A total of 652 glioma patients across three independent cohorts were covered in this study including their preoperative T-2-weighted MRI images, RNA-seq and clinical data. Radiomic features (1731) were extracted from preoperative T-2-weighted MRI images of 167 gliomas (discovery cohort) collected from Beijing Tiantan Hospital and then used to develop a radiomics prediction model through a machine learning-based method. The performance of the radiomics prediction model was validated in two independent cohorts including 261 gliomas from the The Cancer Genomae Atlas database (external validation cohort) and 224 gliomas collected in the prospective study from Beijing Tiantan Hospital (prospective validation cohort). RNA-seq data of gliomas from discovery and external validation cohorts were applied to establish the relationship between biological function and the key radiomics features, which were further validated by single-cell sequencing and immunohistochemical staining. The 14 radiomic features-based prediction model was constructed from preoperative T-2-weighted MRI images in the discovery cohort, and showed highly robust predictive power for overall survival of gliomas in external and prospective validation cohorts. The radiomic features in the prediction model were associated with immune response, especially tumour macrophage infiltration. The preoperative T-2-weighted MRI radiomics prediction model can stably predict the survival of glioma patients and assist in preoperatively assessing the extent of macrophage infiltration in glioma tumours.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 38 条
[1]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[2]   Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma [J].
Beig, Niha ;
Patel, Jay ;
Prasanna, Prateek ;
Hill, Virginia ;
Gupta, Amit ;
Correa, Ramon ;
Bera, Kaustav ;
Singh, Salendra ;
Partovi, Sasan ;
Varadan, Vinay ;
Ahluwalia, Manmeet ;
Madabhushi, Anant ;
Tiwari, Pallavi .
SCIENTIFIC REPORTS, 2018, 8
[3]   IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection [J].
Beiko, Jason ;
Suki, Dima ;
Hess, Kenneth R. ;
Fox, Benjamin D. ;
Cheung, Vincent ;
Cabral, Matthew ;
Shonka, Nicole ;
Gilbert, Mark R. ;
Sawaya, Raymond ;
Prabhu, Sujit S. ;
Weinberg, Jeffrey ;
Lang, Frederick F. ;
Aldape, Kenneth D. ;
Sulman, Erik P. ;
Rao, Ganesh ;
McCutcheon, Ian E. ;
Cahill, Daniel P. .
NEURO-ONCOLOGY, 2014, 16 (01) :81-91
[4]   Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Waldner, Maximilian ;
Obenauf, Anna C. ;
Angell, Helen ;
Fredriksen, Tessa ;
Lafontaine, Lucie ;
Berger, Anne ;
Bruneval, Patrick ;
Fridman, Wolf Herman ;
Becker, Christoph ;
Pages, Franck ;
Speicher, Michael R. ;
Trajanoski, Zlatko ;
Galon, Jerome .
IMMUNITY, 2013, 39 (04) :782-795
[5]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[6]   Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo [J].
De Feyter, Henk M. ;
Behar, Kevin L. ;
Corbin, Zachary A. ;
Fulbright, Robert K. ;
Brown, Peter B. ;
McIntyre, Scott ;
Nixon, Terence W. ;
Rothman, Douglas L. ;
de Graaf, Robin A. .
SCIENCE ADVANCES, 2018, 4 (08)
[7]   Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab [J].
Dohan, Anthony ;
Gallix, Benoit ;
Guiu, Boris ;
Le Malicot, Karine ;
Reinhold, Caroline ;
Soyer, Philippe ;
Bennouna, Jaafar ;
Ghiringhelli, Francois ;
Barbier, Emilie ;
Boige, Valerie ;
Taieb, Julien ;
Bouche, Olivier ;
Francois, Eric ;
Phelip, Jean-Marc ;
Borel, Christian ;
Faroux, Roger ;
Seitz, Jean-Francois ;
Jacquot, Stephane ;
Ben Abdelghani, Meher ;
Khemissa-Akouz, Faiza ;
Genet, Dominique ;
Jouve, Jean Louis ;
Rinaldi, Yves ;
Desseigne, Francoise ;
Texereau, Patrick ;
Suc, Etienne ;
Lepage, Come ;
Aparicio, Thomas ;
Hoeffel, Christine .
GUT, 2020, 69 (03) :531-539
[8]   A metabolic function of FGFR3-TACC3 gene fusions in cancer [J].
Frattini, Veronique ;
Pagnotta, Stefano M. ;
Tala ;
Fan, Jerry J. ;
Russo, Marco V. ;
Lee, Sang Bae ;
Garofano, Luciano ;
Zhang, Jing ;
Shi, Peiguo ;
Lewis, Genevieve ;
Sanson, Heloise ;
Frederick, Vanessa ;
Castano, Angelica M. ;
Cerulo, Luigi ;
Rolland, Delphine C. M. ;
Mall, Raghvendra ;
Mokhtari, Karima ;
Elenitoba-Johnson, Kojo S. J. ;
Sanson, Marc ;
Huang, Xi ;
Ceccarelli, Michele ;
Lasorella, Anna ;
Iavarone, Antonio .
NATURE, 2018, 553 (7687) :222-+
[9]   Defining the biological basis of radiomic phenotypes in lung cancer [J].
Grossmann, Patrick ;
Stringfield, Olya ;
El-Hachem, Nehme ;
Bui, Marilyn M. ;
Velazquez, Emmanuel Rios ;
Parmar, Chintan ;
Leijenaar, Ralph T. H. ;
Haibe-Kains, Benjamin ;
Lambin, Philippe ;
Gilles, Robert J. ;
Aerts, Hugo J. W. L. .
ELIFE, 2017, 6
[10]   Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification [J].
Gupta, A. ;
Young, R. J. ;
Shah, A. D. ;
Schweitzer, A. D. ;
Graber, J. J. ;
Shi, W. ;
Zhang, Z. ;
Huse, J. ;
Omuro, A. M. P. .
CLINICAL NEURORADIOLOGY, 2015, 25 (02) :143-150