Dispersion control and characterization in multiwalled carbon nanotube and phenylethynyl-terminated imide composites

被引:14
作者
Schlea, Michelle R. [1 ]
Brown, T. Renee [2 ,3 ]
Bush, Jordan R. [1 ]
Criss, Jim M., Jr. [4 ]
Mintz, Eric A. [2 ,3 ]
Shofner, Meisha L. [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Clark Atlanta Univ, Dept Chem, Atlanta, GA 30314 USA
[3] Clark Atlanta Univ, High Performance Polymers & Composites Ctr, Atlanta, GA 30314 USA
[4] M&P Technol, Marietta, GA 30068 USA
关键词
Carbon nanotubes; Nanocomposites; Thermomechanical properties; Differential scanning calorimetry (DSC); Rheology; THERMAL TRANSPORT; EPOXY COMPOSITES; FABRICATION; OLIGOMERS; POLYMERS; STRENGTH; MODULUS; ROPES;
D O I
10.1016/j.compscitech.2010.01.019
中图分类号
TB33 [复合材料];
学科分类号
摘要
The inherent multifunctional properties of carbon nanotubes provide an opportunity to create novel composites, but their dispersion Into a polymer matrix is challenging due to nanotube dimensions, interparticle forces, and poor interaction with the polymer In this study, we used melt mixing to disperse multiwalled carbon nanotubes (MWNTs) in a polyimide resin under various process conditions to understand the efficacy of the process and the energy required to achieve dispersion and distribution Through controlled variation of process conditions, we achieved various degrees of nanotube dispersion and distribution The different dispersion and distribution states were observed by microscopy and correlated with the magnitude of the changes seen in the glass transition temperature and viscosity when compared to the neat resin. The results of these studies will be used to assess the compatibility of nanocomposite resins with composite fabrication methods and predict appropriate processing conditions for producing multiscale composites (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:822 / 828
页数:7
相关论文
共 35 条
[1]  
Andrews R, 2002, MACROMOL MATER ENG, V287, P395, DOI 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO
[2]  
2-S
[3]   On the tensile strength distribution of multiwalled carbon nanotubes [J].
Barber, AH ;
Andrews, R ;
Schadler, LS ;
Wagner, HD .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[4]   Ballistic phonon thermal transport in multiwalled carbon nanotubes -: art. no. 226101 [J].
Chiu, HY ;
Deshpande, VV ;
Postma, HWC ;
Lau, CN ;
Mikó, C ;
Forró, L ;
Bockrath, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[5]   Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers [J].
Choi, YK ;
Sugimoto, K ;
Song, SM ;
Gotoh, Y ;
Ohkoshi, Y ;
Endo, M .
CARBON, 2005, 43 (10) :2199-2208
[6]  
CHUANG KC, 2007, INT SAMPE S 2007 BAL
[7]  
CONNELL JW, 2003, SAMPE TECHN C 2003 D
[8]  
CRISS JM, 2009, SAMPE TECHN C 2009 B
[9]   Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J].
Demczyk, BG ;
Wang, YM ;
Cumings, J ;
Hetman, M ;
Han, W ;
Zettl, A ;
Ritchie, RO .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2) :173-178
[10]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56