Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis

被引:47
|
作者
Niessen, Heiko G.
Debska-Vielhaber, Grazyna
Sander, Kerstin
Angenstein, Frank
Ludolph, Albert C.
Hilfert, Liane
Willker, Wieland
Leibfritz, Dieter
Heinze, Hans-Jochen
Kunz, Wolfram S.
Vielhaber, Stefan
机构
[1] Otto von Guericke Univ, Dept Neurol 2, D-39120 Magdeburg, Germany
[2] Leibniz Inst Neurobiol, Special Lab Non Invas Brain Imaging, D-39118 Magdeburg, Germany
[3] Univ Ulm, Dept Neurol, D-89069 Ulm, Germany
[4] Univ Magdeburg, Dept Chem, D-39106 Magdeburg, Germany
[5] Univ Bremen, Dept Organ Chem, D-28334 Bremen, Germany
[6] Univ Bonn, Dept Epileptol, D-53127 Bonn, Germany
关键词
ALS; amino acids; brain metabolism; magnetic resonance spectroscopy; motor neuron disease;
D O I
10.1111/j.1460-9568.2007.05415.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. Visualizing corresponding metabolic changes in the brain of patients with ALS with proton magnetic resonance spectroscopy (H-1-MRS) may provide surrogate markers for an early disease detection, for monitoring the progression and for evaluating a treatment response. The primary objective of our study was to evaluate whether modifications in MR metabolite levels occur before clinical disease onset, and whether these changes are directly linked to a distinct spatial progression pattern in the CNS. Therefore, age-dependent alterations in the cerebral and spinal metabolic profile in the mouse model of ALS overexpressing the mutated human G93A-superoxide dismutase 1 (G93A-SOD1) were determined by high-resolution MRS of tissue extracts at 14.1 Tesla. Both non-transgenic mice (control mice) and transgenic mice overexpressing the non-mutated human SOD1 (tg-SOD1) served as controls. In the spinal cord of G93A-SOD1 mice significantly decreased levels of N-acetyl aspartate were already detected 34 days postpartum, i.e. about 60 days before the average disease onset caused by motor neuron decline. In addition, glutamine and gamma-aminobutyric acid concentrations were significantly diminished at Day 75, which is still in the presymptomatic phase of the disease. These metabolic changes were further progressive in the course of the disease and started to involve the brainstem at Day 75. Overall, high-resolution H-1-MRS allows a sensitive spatial and temporal metabolite profiling in the presymptomatic phase of ALS even before significant neuronal cell loss occurs.
引用
收藏
页码:1669 / 1677
页数:9
相关论文
共 50 条
  • [41] Progressive Degeneration and Inhibition of Peripheral Nerve Regeneration in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Deng, Binbin
    Lv, Wenjing
    Duan, Weisong
    Liu, Yakun
    Li, Zhongyao
    Ma, Yanqin
    Zhang, Guisen
    Song, Xueqin
    Cui, Can
    Qi, Xiaoming
    Li, Yuan
    Li, Chunyan
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 46 (06) : 2358 - 2372
  • [42] Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis
    Zhang, Xiaojie
    Li, Liang
    Chen, Sheng
    Yang, Dehua
    Wang, Yi
    Zhang, Xin
    Wang, Zheng
    Le, Weidong
    AUTOPHAGY, 2011, 7 (04) : 412 - 425
  • [43] Novel behavioural characteristics of the superoxide dismutase 1 G93A (SOD1G93A) mouse model of amyotrophic lateral sclerosis include sex-dependent phenotypes
    Kreilaus, Fabian
    Guerra, Stefan
    Masanetz, Rebecca
    Menne, Victoria
    Yerbury, Justin
    Karl, Tim
    GENES BRAIN AND BEHAVIOR, 2020, 19 (02)
  • [44] Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis
    Ahn, Suk-Won
    Jeon, Gye Sun
    Kim, Myung-Jin
    Shon, Jee-Heun
    Kim, Jee-Eun
    Shin, Je-Young
    Kim, Sung-Min
    Kim, Seung Hyun
    Ye, In-Hae
    Lee, Kwang-Woo
    Hong, Yoon-Ho
    Sung, Jung-Joon
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2014, 340 (1-2) : 112 - 116
  • [45] Spinal motoneurones are intrinsically more responsive in the adult G93A SOD1 mouse model of amyotrophic lateral sclerosis
    Jensen, Dennis B.
    Kadlecova, Marion
    Allodi, Ilary
    Meehan, Claire F.
    JOURNAL OF PHYSIOLOGY-LONDON, 2020, 598 (19): : 4385 - 4403
  • [46] G93A SOD1 alters cell cycle in a cellular model of Amyotrophic Lateral Sclerosis
    Cova, Emanuela
    Ghiroldi, Andrea
    Guareschi, Stefania
    Mazzini, Giuliano
    Gagliardi, Stella
    Davin, Annalisa
    Bianchi, Marika
    Ceroni, Mauro
    Cereda, Cristina
    CELLULAR SIGNALLING, 2010, 22 (10) : 1477 - 1484
  • [47] Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1G93A mouse model of amyotrophic lateral sclerosis
    Lerman, Bruce J.
    Hoffman, Eric P.
    Sutherland, Margaret L.
    Bouri, Khaled
    Hsu, Daniel K.
    Liu, Fu-Tong
    Rothstein, Jeffrey D.
    Knoblach, Susan M.
    BRAIN AND BEHAVIOR, 2012, 2 (05): : 563 - 575
  • [48] Measuring Neuromuscular Junction Functionality in the SOD1G93A Animal Model of Amyotrophic Lateral Sclerosis
    Rizzuto, Emanuele
    Pisu, Simona
    Musaro, Antonio
    Del Prete, Zaccaria
    ANNALS OF BIOMEDICAL ENGINEERING, 2015, 43 (09) : 2196 - 2206
  • [49] Autonomic impairment in a transgenic mouse model of amyotrophic lateral sclerosis
    Kandinov, Boris
    Korczyn, Amos D.
    Rabinowitz, Ruth
    Nefussy, Beatrice
    Drory, Vivian E.
    AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2011, 159 (1-2): : 84 - 89
  • [50] Measuring Neuromuscular Junction Functionality in the SOD1G93A Animal Model of Amyotrophic Lateral Sclerosis
    Emanuele Rizzuto
    Simona Pisu
    Antonio Musarò
    Zaccaria Del Prete
    Annals of Biomedical Engineering, 2015, 43 : 2196 - 2206