Analytical Solutions of the Diffusion-Wave Equation of Groundwater Flow with Distributed-Order of Atangana-Baleanu Fractional Derivative

被引:2
作者
Shah, Nehad Ali [1 ,2 ]
Rauf, Abdul [3 ]
Vieru, Dumitru [4 ]
Sitthithakerngkiet, Kanokwan [5 ]
Kumam, Poom [6 ,7 ]
机构
[1] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 700000, Vietnam
[3] Air Univ Multan Campus, Dept Comp Sci & Math, Multan 60000, Pakistan
[4] Tech Univ Iasi, Dept Theoret Mech, Iasi 700050, Romania
[5] King Mongkuts Univ Technol North Bangkok KMUTNB, Dept Math, Fac Sci Appl, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10140, Thailand
[6] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 09期
关键词
radial diffusion– wave equation; fractional derivative; distributed-order; integral transforms; MODEL; INFILTRATION; TRANSFORM; MEMORY; TESTS; SOILS;
D O I
10.3390/app11094142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized mathematical model of the radial groundwater flow to or from a well is studied using the time-fractional derivative with Mittag-Lefler kernel. Two temporal orders of fractional derivatives which characterize small and large pores are considered in the fractional diffusion-wave equation. New analytical solutions to the distributed-order fractional diffusion-wave equation are determined using the Laplace and Dirichlet-Weber integral transforms. The influence of the fractional parameters on the radial groundwater flow is analyzed by numerical calculations and graphical illustrations are obtained with the software Mathcad.
引用
收藏
页数:13
相关论文
共 43 条
[1]   Multi-precision laplace transform inversion [J].
Abate, J ;
Valkó, PP .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (05) :979-993
[2]   Two-Dimensional Advection-Diffusion Process with Memory and Concentrated Source [J].
Ahmed, Najma ;
Shah, Nehad Ali ;
Vieru, Dumitru .
SYMMETRY-BASEL, 2019, 11 (07)
[3]   Atangana-Baleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: applications in engine oil [J].
Ali, Farhad ;
Murtaza, Saqib ;
Khan, Ilyas ;
Sheikh, Nadeem Ahmad ;
Nisar, Kottakkaran Sooppy .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]   Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation [J].
Atangana, Abdon ;
Vermeulen, P. D. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[7]   The Use of Fractional Order Derivative to Predict the Groundwater Flow [J].
Atangana, Abdon ;
Bildik, Necdet .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[8]   A GENERALIZED RADIAL FLOW MODEL FOR HYDRAULIC TESTS IN FRACTURED ROCK [J].
BARKER, JA .
WATER RESOURCES RESEARCH, 1988, 24 (10) :1796-1804
[9]  
Batu V., 1998, AQUIFER HYDRAULICS C
[10]  
Bear J., 1972, DYNAMICS FLUIDS PORO