To the Hilbert class field from the hypergeometric modular function

被引:2
|
作者
Nagano, A. [1 ]
Shiga, H. [2 ]
机构
[1] Waseda Univ, Tokyo, Japan
[2] Chiba Univ, Chiba, Japan
基金
日本学术振兴会;
关键词
Hilbert class field; Complex multiplication; Moduli of abelian varieties; Hypergeometric functions; Theta functions;
D O I
10.1016/j.jnt.2016.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we make an explicit approach to the problem: "For a given CM field M, construct its maximal unramified abelian extension C(M) by the adjunction of special values of certain modular functions" in some restricted cases with [M : Q] >= 4. We make our argument based on Shimura's main result on the complex multiplication theory of his article in 1967. His main result treats CM fields embedded in a quaternion algebra B over a totally real number field F. We determine the modular function which gives the canonical model for all B's coming from arithmetic triangle groups. That is our main theorem. As its application, we make an explicit case-study for B corresponding to the arithmetic triangle group A(3, 3,5). By using the modular function of K. Koike obtained in 2003, we show several examples of the Hilbert class fields as an application of our theorem to this triangle group. (C) 2016 Elsevier Inc. All rights reserved,
引用
收藏
页码:408 / 430
页数:23
相关论文
共 50 条
  • [1] On a New Class of Hypergeometric Function
    Clemente Cesarano
    Rahul Goyal
    Mansoor Alshehri
    Shilpi Jain
    Praveen Agarwal
    Lobachevskii Journal of Mathematics, 2023, 44 : 2269 - 2278
  • [2] On a New Class of Hypergeometric Function
    Cesarano, Clemente
    Goyal, Rahul
    Alshehri, Mansoor
    Jain, Shilpi
    Agarwal, Praveen
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (06) : 2269 - 2278
  • [3] Quantum modular invariant and Hilbert class fields of real quadratic global function fields
    Demangos, L.
    Gendron, T. M.
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (01):
  • [4] Quantum modular invariant and Hilbert class fields of real quadratic global function fields
    L. Demangos
    T. M. Gendron
    Selecta Mathematica, 2021, 27
  • [5] From the power function to the hypergeometric function
    Yoshida, Masaaki
    ARITHMETIC AND GEOMETRY AROUND HYPERGEOMETRIC FUNCTIONS, 2007, 260 : 407 - 429
  • [6] A Note on Number Knots and the Splitting of the Hilbert Class Field
    Yu, Yih-Jeng
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (02): : 283 - 300
  • [7] Relative integral bases over a Hilbert class field
    Soverchia, E
    JOURNAL OF NUMBER THEORY, 2002, 97 (02) : 199 - 203
  • [8] Modular forms, hypergeometric functions and congruences
    Kazalicki, Matija
    RAMANUJAN JOURNAL, 2014, 34 (01) : 1 - 9
  • [9] A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform
    McCarthy, Dermot
    Papanikolas, Matthew A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (08) : 2431 - 2450
  • [10] Modular forms, hypergeometric functions and congruences
    Matija Kazalicki
    The Ramanujan Journal, 2014, 34 : 1 - 9