Computer aided enzyme design and catalytic concepts

被引:58
作者
Frushicheva, Maria P. [2 ]
Mills, Matthew J. L. [1 ]
Schopf, Patrick [1 ]
Singh, Manoj K. [1 ]
Prasad, Ram B. [1 ]
Warshel, Arieh [1 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02142 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CANDIDA-ANTARCTICA LIPASE; ENERGY PERTURBATION CALCULATIONS; KETOSTEROID ISOMERASE; DIHYDROFOLATE-REDUCTASE; COMPUTATIONAL DESIGN; DIRECTED EVOLUTION; KEMP ELIMINATION; TRANSITION-STATE; ELECTROSTATIC PREORGANIZATION; CONFORMATIONAL DYNAMICS;
D O I
10.1016/j.cbpa.2014.03.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 86 条
[1]   Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions [J].
Adamczyk, Andrew J. ;
Cao, Jie ;
Kamerlin, Shina C. L. ;
Warshel, Arieh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (34) :14115-14120
[2]   The 'evolvability' of promiscuous protein functions [J].
Aharoni, A ;
Gaidukov, L ;
Khersonsky, O ;
Gould, SM ;
Roodveldt, C ;
Tawfik, DS .
NATURE GENETICS, 2005, 37 (01) :73-76
[3]   Origin of the Activity Drop with the E50D Variant of Catalytic Antibody 34E4 for Kemp Elimination [J].
Alexandrova, Anastassia N. ;
Jorgensen, William L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (02) :497-504
[4]   Catalytic Mechanism and Performance of Computationally Designed Enzymes for Kemp Elimination [J].
Alexandrova, Anastassia N. ;
Roethlisberger, Daniela ;
Baker, David ;
Jorgensen, William L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (47) :15907-15915
[5]   Robust design and optimization of retroaldol enzymes [J].
Althoff, Eric A. ;
Wang, Ling ;
Jiang, Lin ;
Giger, Lars ;
Lassila, Jonathan K. ;
Wang, Zhizhi ;
Smith, Matthew ;
Hari, Sanjay ;
Kast, Peter ;
Herschlag, Daniel ;
Hilvert, Donald ;
Baker, David .
PROTEIN SCIENCE, 2012, 21 (05) :717-726
[6]   The Transition of Human Estrogen Sulfotransferase from Generalist to Specialist Using Directed Enzyme Evolution [J].
Amar, Dotan ;
Berger, Ilana ;
Amara, Neri ;
Tafa, Gemechu ;
Meijler, Michael M. ;
Aharoni, Amir .
JOURNAL OF MOLECULAR BIOLOGY, 2012, 416 (01) :21-32
[7]   Efficient Catalytic Promiscuity for Chemically Distinct Reactions [J].
Babtie, Ann C. ;
Bandyopadhyay, Subhajit ;
Olguin, Luis F. ;
Hollfelder, Florian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (20) :3692-3694
[8]   Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution [J].
Barrozo, Alexandre ;
Borstnar, Rok ;
Marloie, Gael ;
Kamerlin, Shina Caroline Lynn .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (10) :12428-12460
[9]   Free-energy landscape of enzyme catalysis [J].
Benkovic, Stephen J. ;
Hammes, Gordon G. ;
Hammes-Schiffer, Sharon .
BIOCHEMISTRY, 2008, 47 (11) :3317-3321
[10]   A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis [J].
Bhabha, Gira ;
Lee, Jeeyeon ;
Ekiert, Damian C. ;
Gam, Jongsik ;
Wilson, Ian A. ;
Dyson, H. Jane ;
Benkovic, Stephen J. ;
Wright, Peter E. .
SCIENCE, 2011, 332 (6026) :234-238