We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Guo, Li
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USASun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
机构:
King Abdullah Univ Sci & Technol, Ctr Uncertainty Quantificat Computat Sci & Engn, Div Math & Comp Elect & Math Sci & Engn CEMSE, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Ctr Uncertainty Quantificat Computat Sci & Engn, Div Math & Comp Elect & Math Sci & Engn CEMSE, Thuwal 239556900, Saudi Arabia
de Dios, Blanca Ayuso
Zikatanov, Ludmil
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAKing Abdullah Univ Sci & Technol, Ctr Uncertainty Quantificat Computat Sci & Engn, Div Math & Comp Elect & Math Sci & Engn CEMSE, Thuwal 239556900, Saudi Arabia
Zikatanov, Ludmil
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI,
2014,
98
: 3
-
15