We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, S. C.
Cui, J.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Cui, J.
Gudi, T.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Gudi, T.
Sung, L. -Y.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Zhang, Lu
Appelo, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Math, E Lansing, MI 48824 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Appelo, Daniel
Hagstrom, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Southern Methodist Univ, Dept Math, Dallas, TX 75275 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA