BOUNDARY VALUE PROBLEMS FOR HARMONIC FUNCTIONS ON DOMAINS IN SIERPINSKI GASKETS

被引:2
|
作者
Cao, Shiping [1 ]
Qiu, Hua [2 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Boundary value problems; harmonic functions; fractal Laplacians; Sierpinski gasket; energy estimates; DIRICHLET FORMS; TRACE THEOREM;
D O I
10.3934/cpaa.2020054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study boundary value problems for harmonic functions on certain domains in the level-l Sierpinski gaskets SG(1) (l >= 2) whose boundaries are Cantor sets. We give explicit analogues of the Poisson integral formula to recover harmonic functions from their boundary values. Three types of domains, the left half domain of SG(1) and the upper and lower domains generated by horizontal cuts of SG(1) are considered at present. We characterize harmonic functions of finite energy and obtain their energy estimates in terms of their boundary values. This paper settles several open problems raised in previous work.
引用
收藏
页码:1147 / 1179
页数:33
相关论文
共 50 条
  • [1] Boundary Value Problems for Harmonic Functions on a Domain in the Sierpinski Gasket
    Owen, Justin
    Strichartz, Robert S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (01) : 319 - 335
  • [2] Harmonic Oscillators on Infinite Sierpinski Gaskets
    Edward Fan
    Zuhair Khandker
    Robert S. Strichartz
    Communications in Mathematical Physics, 2009, 287 : 351 - 382
  • [3] Harmonic Oscillators on Infinite Sierpinski Gaskets
    Fan, Edward
    Khandker, Zuhair
    Strichartz, Robert S.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) : 351 - 382
  • [4] Harmonic wavelets in boundary value problems for harmonic and biharmonic functions
    Subbotin, Y. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (04): : 281 - 296
  • [5] Harmonic wavelets in boundary value problems for harmonic and biharmonic functions
    Yu. N. Subbotin
    N. I. Chernykh
    Proceedings of the Steklov Institute of Mathematics, 2011, 273 : 142 - 159
  • [6] Harmonic Wavelets in Boundary Value Problems for Harmonic and Biharmonic Functions
    Subbotin, Yu. N.
    Chernykh, N. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 273 : S142 - S159
  • [7] ON AN INTEGRAL EQUATION OF SOME BOUNDARY VALUE PROBLEMS FOR HARMONIC FUNCTIONS IN PLANE MULTIPLY CONNECTED DOMAINS WITH NONREGULAR BOUNDARY
    MIKHAILOV, SE
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 121 (3-4): : 525 - 536
  • [8] Sierpinski gaskets for logic functions representation
    Popel, DV
    Dani, A
    ISMVL 2002: 32ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2002, : 39 - 45
  • [9] Boundary value problems for harmonic vector fields on nonsmooth domains
    Mitrea, D
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING, 2000, 418 : 234 - 239
  • [10] Nonlinear boundary value problems relative to harmonic functions
    Boukarabila, Y. Oussama
    Veron, Laurent
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 201 (201)