Abstract splines in Krein spaces

被引:5
作者
Giribet, J. I. [1 ,2 ]
Maestripieri, A. [1 ,2 ]
Martinez Peria, F. [1 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto Calderon, RA-1083 Buenos Aires, DF, Argentina
[2] FI UBA, Dept Matemat, RA-1083 Buenos Aires, DF, Argentina
[3] Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina
关键词
Krein spaces; Abstract splines; Oblique projections; ARC SPLINES; INTERPOLATION;
D O I
10.1016/j.jmaa.2010.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present generalizations to Krein spaces of the abstract interpolation and smoothing problems proposed by Atteia in Hilbert spaces: given a Krein space K and Hilbert spaces H and epsilon (bounded) surjective operators T : H -> K and V : H - epsilon, rho > 0 and a fixed z(0) is an element of epsilon, we study the existence of solutions of the problems argmin {[Tx, Tx]K: Vx = z(0)} and argmin {[Tx, Tx]K + rho parallel to Vx - Z(0)parallel to(2)(epsilon) : x epsilon H} (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 36 条
[1]  
Ando T., 1979, LINEAR OPERATORS KRE
[2]  
[Anonymous], LINEAR OPERATORS SPA
[3]  
[Anonymous], 2001, Variational Theory of Splines
[4]  
[Anonymous], FIELDS I MONOGR
[5]   A GENERAL METHOD FOR CONSTRUCTION OF INTERPOLATING OR SMOOTHING SPLINE-FUNCTIONS [J].
ANSELONE, PM ;
LAURENT, PJ .
NUMERISCHE MATHEMATIK, 1968, 12 (01) :66-&
[6]  
ATTEIA M, 1965, CR HEBD ACAD SCI, V260, P3550
[7]  
ATTEIA M, 1992, H KERNELS SPLINE FUN
[8]  
Bartels R. H., 1987, An Introduction to Splines for Use in Computer Graphics Geometric Modeling
[9]  
Bognar J., 1974, Indefinite Inner Product Spaces
[10]  
Bouldin R., 1973, Tohoku Math. J. (2), V25, P359, DOI DOI 10.2748/TMJ/1178241337