Effect of fatigue crack propagation in the shape memory alloy fiber reinforced smart composite

被引:3
作者
Shimamoto, Akira [1 ]
Furuyama, Yasubumi [2 ]
Abe, Hiroyuki [3 ]
机构
[1] Saitama Inst Technol, High Tech Res Ctr, 1690 Fusaiji, Fukaya, Saitama 3690293, Japan
[2] Hirosaki Univ, Dept Intelligent Machines & System Engn, Hirosaki, Aomori 0368561, Japan
[3] Tohoku Univ, Sendai, Miyagi 9808577, Japan
来源
ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES, PTS 1 AND 2 | 2007年 / 334-335卷
关键词
shape memory alloy; polycarbonate composite; fatigue; crack propagation; crack closure; shrinkage effect;
D O I
10.4028/www.scientific.net/KEM.334-335.1093
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, the TiNi fiber reinforced/Polycarbonate(PC) composite material is developed, and its properties is studied. Conducting fatigue experiments, shape memory effect of the material for preventing fatigue crack growth are investigated. The fatigue behavior and crack propagation are observed under increasing temperature with a SEM servo-pulser, which is a fatigue testing instrument with scanning electron microscope. As the results, the effectiveness of fatigue resistance is confirmed. The shape memory effect and expansion behavior of the matrix caused by increasing temperature create the effect of the fatigue crack propagation control. It is verified that the controlling of fatigue crack growth is attributed to the compressive stress field in the matrix which is caused by shrinkage of the TiNi fibers above austenitic finishing temperature (At).
引用
收藏
页码:1093 / +
页数:2
相关论文
共 50 条
  • [31] Fatigue Strengthening of Metallic Structures with a Thermally Activated Shape Memory Alloy Fiber-Reinforced Polymer Patch
    Zheng, B.
    Dawood, M.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2017, 21 (04)
  • [32] Mechanical fatigue crack growth characteristics of a Ti-Ni-Cu shape memory alloy
    Kishi, Y
    Yajima, Z
    Shimizu, K
    Asai, M
    JAPAN INSTITUTE OF METALS, PROCEEDINGS, VOL 12, (JIMIC-3), PTS 1 AND 2: SOLID - SOLID PHASE TRANSFORMATIONS, 1999, : 1052 - 1055
  • [33] Shape memory alloy actuator fatigue properties
    Clark, CR
    Marcelli, DP
    SMART STRUCTURES AND MATERIALS 1999: SMART MATERIALS TECHNOLOGIES, 1999, 3675 : 311 - 320
  • [34] Fatigue properties of TiNi shape memory alloy
    Lin, PH
    Tobushi, H
    Hashimoto, T
    Shimeno, Y
    Takata, K
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 2001, 7 (02): : 103 - 110
  • [35] Fatigue properties of TiNi shape memory alloy
    Tobushi, H
    Hashimoto, T
    Shimeno, Y
    Takata, K
    SHAPE MEMORY MATERIALS, 2000, 327-3 : 151 - 154
  • [36] Interfacial Reactions in Model NiTi Shape Memory Alloy Fiber-Reinforced Sn Matrix “Smart” Composites
    J.P. Coughlin
    J.J. Williams
    G.A. Crawford
    N. Chawla
    Metallurgical and Materials Transactions A, 2009, 40 : 176 - 184
  • [37] The Role of Interfacial Rigidity to Crack Propagation Path in Fiber Reinforced Polymer Composite
    Budiman, Bentang Arief
    Adziman, Fauzan
    Sambegoro, Poetro Lebdo
    Nurprasetio, Ignatius Pulung
    Ilhamsyah, Rizky
    Aziz, Muhammad
    FIBERS AND POLYMERS, 2018, 19 (09) : 1980 - 1988
  • [38] The Role of Interfacial Rigidity to Crack Propagation Path in Fiber Reinforced Polymer Composite
    Bentang Arief Budiman
    Fauzan Adziman
    Poetro Lebdo Sambegoro
    Ignatius Pulung Nurprasetio
    Rizky Ilhamsyah
    Muhammad Aziz
    Fibers and Polymers, 2018, 19 : 1980 - 1988
  • [39] Monitoring the required energy for the crack propagation of fiber-reinforced cementitious composite
    Mirzamohammadi, Sajjad
    Mazloom, Moosa
    STRUCTURAL MONITORING AND MAINTENANCE, 2021, 8 (03): : 279 - 294
  • [40] Microtentacle Actuators Based on Shape Memory Alloy Smart Soft Composite
    Lee, Hyun-Taek
    Seichepine, Florent
    Yang, Guang-Zhong
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (34)