Experimental and DEM assessment of the stress-dependency of surface roughness effects on shear modulus

被引:68
作者
Otsubo, Masahide [1 ]
O'Sullivan, Catherine [2 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Imperial Coll London, Dept Civil & Environm Engn, London SW7 2AZ, England
关键词
Laboratory tests; Discrete element method; Small-strain stiffness; Roughness; Dynamics; Piezo-ceramic transducer; BENDER ELEMENTS; PARTICLE CHARACTERISTICS; SOIL STIFFNESS; TRANSDUCERS; BEHAVIOR; G(MAX);
D O I
10.1016/j.sandf.2018.02.020
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This contribution assesses the effect of particle surface roughness on the shear wave velocity (V-S) and the small-strain stiffness (G(0)) of soils using both laboratory shear plate dynamic tests and discrete element method (DEM) analyses. Roughness is both controlled and quantified to develop a more comprehensive understanding than was achieved in prior contributions that involved binary comparisons of rough and smooth particles. Glass beads were tested to isolate surface roughness effects from other shape effects. V-S and G(0) were accurately determined using a new design configuration of piezo-ceramic shear plates. Both the experimental and the DEM results show that increasing surface roughness reduces G(0) particularly at low stress levels; however, the effect is less marked at high pressures. For the roughest particles, the Hertzian theory does not describe the contact behaviour even at high pressures; this contributes to the fact that the exponent in the G(0) - mean effective stress relationship exceeds 0.33 for sand particles. Particle-scale analyses show that the pressure-dependency of the surface roughness effects on G(0) can be interpreted using roughness index alpha which enables the extent of the reduction in G(0) due to surface roughness to be estimated. (C) 2018 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.
引用
收藏
页码:602 / 614
页数:13
相关论文
共 37 条
[1]   Changes to particle characteristics associated with the compression of sands [J].
Altuhafi, F. N. ;
Coop, M. R. .
GEOTECHNIQUE, 2011, 61 (06) :459-471
[2]   On the performance of bender elements in triaxial tests [J].
Alvarado, G. ;
Coop, M. R. .
GEOTECHNIQUE, 2012, 62 (01) :1-17
[3]  
[Anonymous], 2016, THESIS
[4]   Effects of sample size on bender-based axial G0 measurements [J].
Arroyo, M ;
Wood, DM ;
Greening, PD ;
Medina, L ;
Rio, J .
GEOTECHNIQUE, 2006, 56 (01) :39-52
[5]   Non-linear soil stiffness in routine design [J].
Atkinson, JH .
GEOTECHNIQUE, 2000, 50 (05) :487-507
[6]   CO-ORDINATION OF RANDOMLY PACKED SPHERES [J].
BERNAL, JD ;
MASON, J .
NATURE, 1960, 188 (4754) :910-911
[7]  
Brignoli EGM, 1996, GEOTECH TEST J, V19, P384
[8]   The influence of particle characteristics on the behaviour of coarse grained soils [J].
Cavarretta, I. ;
Coop, M. ;
O'Sullivan, C. .
GEOTECHNIQUE, 2010, 60 (06) :413-423
[9]   Characterization of artificial spherical particles for DEM validation studies [J].
Cavarretta, Ignazio ;
O'Sullivan, Catherine ;
Ibraim, Erdin ;
Lings, Martin ;
Hamlin, Simon ;
Wood, David Muir .
PARTICUOLOGY, 2012, 10 (02) :209-220
[10]  
Chang ChingS., 1991, Soil Dynamics and Earthquake Engineering, V10, P201