Inverted organic solar cells using nanocellulose as substrate

被引:37
作者
Costa, Saionara Vilhegas [1 ]
Pingel, Patrick [2 ]
Janietz, Silvia [2 ]
Nogueira, Ana Flavia [1 ]
机构
[1] Univ Estadual Campinas, Lab Nanotecnol Energia Solar E, POB 6154, BR-13083970 Campinas, SP, Brazil
[2] Fraunhofer IAP, Dept Polymer & Elect, Geiselbergstr 69, D-14469 Potsdam, Germany
基金
巴西圣保罗研究基金会;
关键词
biopolymers and renewable polymers; cellulose and other wood products; optical and photovoltaic applications; TRANSPARENT; EFFICIENT; PAPER;
D O I
10.1002/app.43679
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Organic photovoltaics (OPVs) offer the potential for ultralow cost mass-producible photovoltaic devices. Other advantages are light weight and good mechanical flexibility. To further reduce the cost, the replacement of the conventional conducting substrates for cellulose is an interesting choice. There are three main types of nanocellulose materials: nanofibrillated cellulose (NFC), nanocrystalline cellulose (CNC), and bacterial nanocellulose. In this work, the synthesis of two types of nanocellulose substrates and their application in OPVs were achieved. For the first time, the different properties of the cellulose substrates and their influence on the OPV performance were addressed. The nanocellulose substrates CNC and NFC were characterized by XRD, AFM, and DSC. CNC films were more homogeneous, smoother, crystalline and with low roughness. Thus, when comparing the cellulosic substrates, the best device the one based on CNC. The PCE values of the inverted OPV cells were 3.0, 1.4, and 0.5% on to glass, CNC and NFC substrates. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43679.
引用
收藏
页数:6
相关论文
共 21 条
  • [1] Polymer-Fullerene Bulk-Heterojunction Solar Cells
    Brabec, Christoph J.
    Gowrisanker, Srinivas
    Halls, Jonathan J. M.
    Laird, Darin
    Jia, Shijun
    Williams, Shawn P.
    [J]. ADVANCED MATERIALS, 2010, 22 (34) : 3839 - 3856
  • [2] Chinga-Carrasco G., 2012, J NANOPART RES, V14, P1
  • [3] Christoph Richter D. L., 2013, SOLAR ENERGY
  • [4] Transparent and conductive paper from nanocellulose fibers
    Hu, Liangbing
    Zheng, Guangyuan
    Yao, Jie
    Liu, Nian
    Weil, Ben
    Eskilsson, Martin
    Karabulut, Erdem
    Ruan, Zhichao
    Fan, Shanhui
    Bloking, Jason T.
    McGehee, Michael D.
    Wagberg, Lars
    Cui, Yi
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) : 513 - 518
  • [5] Janietz S., 2013, P SOC PHOTO-OPT INS, V8830
  • [6] Oxidation of silver electrodes induces transition from conventional to inverted photovoltaic characteristics in polymer solar cells
    Kim, Jong Bok
    Kim, Chang Su
    Kim, Youn Sang
    Loo, Yueh-Lin
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (18)
  • [7] Nanocelluloses: A New Family of Nature-Based Materials
    Klemm, Dieter
    Kramer, Friederike
    Moritz, Sebastian
    Lindstrom, Tom
    Ankerfors, Mikael
    Gray, Derek
    Dorris, Annie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (24) : 5438 - 5466
  • [8] Inkjet printed solar cell active layers prepared from chlorine-free solvent systems
    Lange, Alexander
    Schindler, Wolfram
    Wegener, Michael
    Fostiropoulos, Konstantinos
    Janietz, Silvia
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 109 : 104 - 110
  • [9] Mechanically robust, ITO-free, 4.8% efficient, all-solution processed organic solar cells on flexible PET foil
    Nickel, Felix
    Haas, Thomas
    Wegner, Eduard
    Bahro, Daniel
    Salehin, Sayedus
    Kraft, Oliver
    Gruber, Patric A.
    Colsmann, Alexander
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 317 - 321
  • [10] Sensor technologies based on a cellulose supported platform
    Poplin, Jane Holly
    Swatloski, Richard P.
    Holbrey, John D.
    Spear, Scott K.
    Metlen, Andreas
    Graetzel, Michael
    Nazeeruddin, Mohammad K.
    Rogers, Robin D.
    [J]. CHEMICAL COMMUNICATIONS, 2007, (20) : 2025 - 2027