Compressive Creep of Polymer Electrolyte Membranes: A Case Study for Electrolyzers

被引:17
作者
Arthurs, Claire [1 ,2 ]
Kusoglu, Ahmet [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Convers Grp, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 04期
关键词
compression; electrolyzer; creep; ionomer; mechanics; hydration; MECHANICAL-PROPERTIES; TEMPERATURE; MORPHOLOGY; DIFFUSION; HYDRATION; NAFION;
D O I
10.1021/acsaem.0c03024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For proton-exchange membrane (PEM) water electrolyzers to be commercially feasible, PEMs must perform over long lifetimes in liquid environments under compression while maintaining mechanical stability. A hydrated environment, while inherent for operation and conductivity, undermines PEM stability. Mechanical stability of PEMs is commonly characterized in tension, which is not applicable to electrolyzers, wherein PEMs could undergo high pressures. In this study, a compression creep procedure is developed using a custom-designed setup to monitor creep response of hydrated PEMs. Our results show that PEMs exhibit continuous creep response under compression over 24 h, with a dependence on the applied pressure and hydration state.
引用
收藏
页码:3249 / 3254
页数:6
相关论文
共 30 条
[1]   Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources [J].
Arico, A. S. ;
Siracusano, S. ;
Briguglio, N. ;
Baglio, V. ;
Di Blasi, A. ;
Antonucci, V. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) :107-118
[2]   Research Advances Towards Low Cost, High Efficiency PEM Electrolysis [J].
Ayers, K. E. ;
Anderson, E. B. ;
Capuano, C. B. ;
Carter, B. D. ;
Dalton, L. T. ;
Hanlon, G. ;
Manco, J. ;
Niedzwiecki, M. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :3-15
[3]   Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers [J].
Ayers, Katherine E. ;
Renner, Julie N. ;
Danilovic, Nemanja ;
Wang, Jia X. ;
Zhang, Yu ;
Maric, Radenka ;
Yu, Haoran .
CATALYSIS TODAY, 2016, 262 :121-132
[4]   Review-Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development [J].
Babic, Ugljesa ;
Suermann, Michel ;
Buechi, Felix N. ;
Gubler, Lorenz ;
Schmidt, Thomas J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F387-F399
[5]   Osmotic pressure of water in Nafion® [J].
Budinski M.K. ;
Cook A. .
Tsinghua Science and Technology, 2010, 15 (04) :385-390
[6]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[7]  
Cropley C., 2008, A Low-Cost High-Pressure Hydrogen Generator
[8]   Challenges In Going from Laboratory to Megawatt Scale PEM Electrolysis [J].
Danilovic, N. ;
Ayers, K. ;
Capuano, C. ;
Renner, J. ;
Wiles, L. ;
Pertoso, M. .
POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14) :395-402
[9]  
Department of Defense, 2020, DEAF MUTE POP US, P1, DOI DOI 10.1016/J.JSV.2006.01.020
[10]   Impact of a Compressive Stress on Water Sorption and Diffusion in lonomer Membranes for Fuel Cells. A 1H NMR Study in Vapor Equilibrated Nafion [J].
El Kaddouri, Assma ;
Perrin, Jean-Christophe ;
Colinart, Thibaut ;
Moyne, Christian ;
Leclerc, Sebastien ;
Guendouz, Laoues ;
Lottin, Olivier .
MACROMOLECULES, 2016, 49 (19) :7296-7307