Gas Source Parameter Estimation Using Machine Learning in WSNs

被引:10
作者
Mahfouz, Sandy [1 ]
Mourad-Chehade, Farah [1 ]
Honeine, Paul [2 ]
Farah, Joumana [3 ]
Snoussi, Hichem [1 ]
机构
[1] Univ Technol Troyes, Lab Modelisat & Surete Syst, Inst Charles Delaunay, F-10010 Troyes, France
[2] Univ Rouen, Lab Informat Traitement Informat & Syst, F-76800 Rouen, France
[3] Lebanese Univ, Fac Engn, Roumieh, Lebanon
关键词
Gas diffusion; machine learning; one-class classification; ridge regression; source parameter estimation;
D O I
10.1109/JSEN.2016.2569559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces an original clusterized framework for the detection and estimation of the parameters of multiple gas sources in wireless sensor networks. The proposed method consists of defining a kernel-based detector that can detect gas releases within the network's clusters using concentration measures collected regularly from the network. Then, we define two kernel-based models that accurately estimate the gas release parameters, such as the sources locations and their release rates, using the collected concentrations.
引用
收藏
页码:5795 / 5804
页数:10
相关论文
共 50 条
[41]   ESTIMATION OF NDVI FOR CLOUDY PIXELS USING MACHINE LEARNING [J].
Agrawal, R. ;
Mohite, J. D. ;
Sawant, S. A. ;
Pandit, A. ;
Pappula, S. .
XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 :813-818
[42]   Mud loss estimation using machine learning approach [J].
Abo Taleb T. Al-Hameedi ;
Husam H. Alkinani ;
Shari Dunn-Norman ;
Ralph E. Flori ;
Steven A. Hilgedick ;
Ahmed S. Amer ;
Mortadha Alsaba .
Journal of Petroleum Exploration and Production Technology, 2019, 9 :1339-1354
[43]   Effort Estimation for Redmine Tickets Using Machine Learning [J].
Tran Thu Thuy ;
Phan Duy Hung .
COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, CDVE 2024, 2024, 15158 :143-151
[44]   Estimation of Monthly Rainfall using Machine Learning Approaches [J].
Goyal, Hemlata ;
Sharma, Chilka ;
Joshi, Nisheeth .
2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN CONTROL, COMMUNICATION AND INFORMATION SYSTEMS (ICICCI-2017), 2017, :230-235
[45]   Analysis of automated estimation models using machine learning [J].
Saavedra Martinez, Jesus Ivan ;
Valdes Souto, Francisco ;
Rodriguez Monje, Moises .
2020 8TH EDITION OF THE INTERNATIONAL CONFERENCE IN SOFTWARE ENGINEERING RESEARCH AND INNOVATION (CONISOFT 2020), 2020, :110-116
[46]   Fast, Continuous Audiogram Estimation Using Machine Learning [J].
Song, Xinyu D. ;
Wallace, Brittany M. ;
Gardner, Jacob R. ;
Ledbetter, Noah M. ;
Weinberger, Kilian Q. ;
Barbour, Dennis L. .
EAR AND HEARING, 2015, 36 (06) :E326-E335
[47]   Estimation of Hourly Utility Usage Using Machine Learning [J].
Wong, Albert ;
Chiu, Chunyin ;
Abdulgapul, Abigail ;
Beg, Mirza Nomaan ;
Khmelevsky, Youry ;
Mahony, Joe .
SYSCON 2022: THE 16TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2022,
[48]   Estimation of Turkey's Natural Gas Consumption by Machine Learning Techniques [J].
Erdem, Osman Emin ;
Kesen, Saadettin Erhan .
GAZI UNIVERSITY JOURNAL OF SCIENCE, 2020, 33 (01) :120-133
[49]   Estimation of shale adsorption gas content based on machine learning algorithms [J].
Chen, Yang ;
Tang, Shuheng ;
Xi, Zhaodong ;
Sun, Shasha ;
Zhao, Ning ;
Tang, Hongming ;
Zhao, Shengxian .
GAS SCIENCE AND ENGINEERING, 2024, 127
[50]   MLSTL-WSN: machine learning-based intrusion detection using SMOTETomek in WSNs [J].
Talukder, Md. Alamin ;
Sharmin, Selina ;
Uddin, Md Ashraf ;
Islam, Md Manowarul ;
Aryal, Sunil .
INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (03) :2139-2158