Gas Source Parameter Estimation Using Machine Learning in WSNs

被引:10
作者
Mahfouz, Sandy [1 ]
Mourad-Chehade, Farah [1 ]
Honeine, Paul [2 ]
Farah, Joumana [3 ]
Snoussi, Hichem [1 ]
机构
[1] Univ Technol Troyes, Lab Modelisat & Surete Syst, Inst Charles Delaunay, F-10010 Troyes, France
[2] Univ Rouen, Lab Informat Traitement Informat & Syst, F-76800 Rouen, France
[3] Lebanese Univ, Fac Engn, Roumieh, Lebanon
关键词
Gas diffusion; machine learning; one-class classification; ridge regression; source parameter estimation;
D O I
10.1109/JSEN.2016.2569559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces an original clusterized framework for the detection and estimation of the parameters of multiple gas sources in wireless sensor networks. The proposed method consists of defining a kernel-based detector that can detect gas releases within the network's clusters using concentration measures collected regularly from the network. Then, we define two kernel-based models that accurately estimate the gas release parameters, such as the sources locations and their release rates, using the collected concentrations.
引用
收藏
页码:5795 / 5804
页数:10
相关论文
共 50 条
[21]   ESTIMATION OF POWER CONSUMPTION USING MACHINE LEARNING [J].
Divyadharshini, M. ;
Pavithra, S. ;
Priya, Shanmuga R. .
INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) :487-494
[22]   Optical SNR estimation using machine learning [J].
Rai P. ;
Kaushik R. .
Journal of Optical Communications, 2024, 45 (02) :427-433
[23]   Uncertainty in Position Estimation Using Machine Learning [J].
Zhao, Yuxin ;
Shrestha, Deep .
INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN 2021), 2021,
[24]   Estimation of Gas Emission Values on Highways in Turkey with Machine Learning [J].
Kurt, Nursac ;
Ozturk, Oktay ;
Beken, Murat .
10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, :443-446
[25]   Confidence Estimation Using Machine Learning in Immersive Learning Environments [J].
Tao, Yudong ;
Coltey, Erik ;
Wang, Tianyi ;
Alonso, Miguel, Jr. ;
Shyu, Mei-Ling ;
Chen, Shu-Ching ;
Alhaffar, Hadi ;
Elias, Albert ;
Bogosian, Biayna ;
Vassigh, Shahin .
THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, :247-252
[26]   Source Number Estimation via Machine Learning Based on Eigenvalue Preprocessing [J].
Zhou, Shuai ;
Li, Tao ;
Li, Yongzhao ;
Zhang, Rui ;
Ruan, Yuhan .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (10) :2360-2364
[27]   Comprehensive Review on Application of Machine Learning Algorithms for Water Quality Parameter Estimation Using Remote Sensing Data [J].
Wagle, Nimisha ;
Acharya, Tri Dev ;
Lee, Dong Ha .
SENSORS AND MATERIALS, 2020, 32 (11) :3879-3892
[28]   Machine-Learning-Based Model Parameter Identification for Cutting Force Estimation [J].
Kouguchi, Junichi ;
Tajima, Shingo ;
Yoshioka, Hayato .
INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2024, 18 (01) :26-38
[29]   FOREST BIOPHYSICAL PARAMETER ESTIMATION VIA MACHINE LEARNING AND NEURAL NETWORK APPROACHES [J].
Aksoy, Samet ;
Al Shwayyat, Shouq Zuhter Hasan ;
Topgul, Sule Nur ;
Sertel, Elif ;
Unsalan, Cem ;
Salo, Jari ;
Holmstrom, Anton ;
Wallerman, Jorgen ;
Nilsson, Mats ;
Fransson, Johan E. S. .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :2661-2664
[30]   A Survey on Source Code Review Using Machine Learning [J].
Wang Xiaomeng ;
Zhang Tao ;
Xin Wei ;
Hou Changyu .
2018 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS ENGINEERING (ICISE), 2018, :56-60