Gas Source Parameter Estimation Using Machine Learning in WSNs

被引:10
|
作者
Mahfouz, Sandy [1 ]
Mourad-Chehade, Farah [1 ]
Honeine, Paul [2 ]
Farah, Joumana [3 ]
Snoussi, Hichem [1 ]
机构
[1] Univ Technol Troyes, Lab Modelisat & Surete Syst, Inst Charles Delaunay, F-10010 Troyes, France
[2] Univ Rouen, Lab Informat Traitement Informat & Syst, F-76800 Rouen, France
[3] Lebanese Univ, Fac Engn, Roumieh, Lebanon
关键词
Gas diffusion; machine learning; one-class classification; ridge regression; source parameter estimation;
D O I
10.1109/JSEN.2016.2569559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces an original clusterized framework for the detection and estimation of the parameters of multiple gas sources in wireless sensor networks. The proposed method consists of defining a kernel-based detector that can detect gas releases within the network's clusters using concentration measures collected regularly from the network. Then, we define two kernel-based models that accurately estimate the gas release parameters, such as the sources locations and their release rates, using the collected concentrations.
引用
收藏
页码:5795 / 5804
页数:10
相关论文
共 50 条
  • [1] Precision Parameter Estimation and Machine Learning
    Wandelt, Benjamin D.
    CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS, 2008, 1082 : 339 - 344
  • [2] Using Machine Learning in WSNs for Performance Prediction MAC Layer
    Alaoui, El Arbi Abdellaoui
    Messai, Mohamed-Lamine
    Nayyar, Anand
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [3] Femtosecond pulse parameter estimation from photoelectron momenta using machine learning
    Szoldra, Tomasz
    Ciappina, Marcelo F.
    Werby, Nicholas
    Bucksbaum, Philip H.
    Lewenstein, Maciej
    Zakrzewski, Jakub
    Maxwell, Andrew S.
    NEW JOURNAL OF PHYSICS, 2023, 25 (08):
  • [4] Estimation of Methane Gas Production in Turkey Using Machine Learning Methods
    uenal Uyar, Gueler Ferhan
    Terzioglu, Mustafa
    Kayakus, Mehmet
    Tutcu, Burcin
    cosgun, Ahmet
    Tonguc, Gueray
    Kaplan Yildirim, Rueya
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [5] Parameter estimation via weak measurement with machine learning
    Liu, Wenhuan
    Huang, Jingzheng
    Li, Yanjia
    Li, Hongjing
    Fang, Chen
    Yu, Yang
    Zeng, Guihua
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (04)
  • [6] Estimation of radiation source distribution using machine learning with γ ray energy spectra
    Uemura, Takero
    Yamaguchi, Katsuhiko
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2020, 7 (01): : 71 - 81
  • [8] Machine learning-Based method for gas leakage source term estimation in highway tunnels
    Lyu, Shan
    Qi, Qi
    Huang, Xiaomei
    Peng, Shini
    Yang, Dong
    Chen, Liuyang
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 154
  • [9] Transfer learning and the early estimation of single-photon source quality using machine learning methods
    Kedziora, David Jacob
    Musial, Anna
    Rudno-Rudzinski, Wojciech
    Gabrys, Bogdan
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (02):
  • [10] LLR estimation using machine learning
    Mostari, Latifa
    Goupil, Alban
    Taleb-Ahmed, Abdelmalik
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 230 - 236