SeaDronesSee: A Maritime Benchmark for Detecting Humans in Open Water

被引:87
作者
Varga, Leon Amadeus [1 ]
Kiefer, Benjamin [1 ]
Messmer, Martin [1 ]
Zell, Andreas [1 ]
机构
[1] Univ Tubingen, Cognit Syst Grp, Tubingen, Germany
来源
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022) | 2022年
关键词
RESCUE; SEARCH;
D O I
10.1109/WACV51458.2022.00374
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unmanned Aerial Vehicles (UAVs) are of crucial importance in search and rescue missions in maritime environments due to their flexible and fast operation capabilities. Modern computer vision algorithms are of great interest in aiding such missions. However, they are dependent on large amounts of real-case training data from UAVs, which is only available for traffic scenarios on land. Moreover, current object detection and tracking data sets only provide limited environmental information or none at all, neglecting a valuable source of information. Therefore, this paper introduces a large-scaled visual object detection and tracking benchmark (SeaDronesSee) aiming to bridge the gap from land-based vision systems to sea-based ones. We collect and annotate over 54,000 frames with 400,000 instances captured from various altitudes and viewing angles ranging from 5 to 260 meters and 0 to 90 degrees degrees while providing the respective meta information for altitude, viewing angle and other meta data. We evaluate multiple state-of-the-art computer vision algorithms on this newly established benchmark serving as baselines. We provide an evaluation server where researchers can upload their prediction and compare their results on a central leaderboard(1).
引用
收藏
页码:3686 / 3696
页数:11
相关论文
共 57 条
[1]   Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry [J].
Adao, Telmo ;
Hruska, Jonas ;
Padua, Luis ;
Bessa, Jose ;
Peres, Emanuel ;
Morais, Raul ;
Sousa, Joaquim Joao .
REMOTE SENSING, 2017, 9 (11)
[2]  
Albanese Antonio, 2020, ARXIV200305819
[3]  
[Anonymous], 2013, ADV TECHNOLOGIES INT
[4]  
Antonini A., 2018, ARXIV181001987
[5]   Tracking without bells and whistles [J].
Bergmann, Philipp ;
Meinhardt, Tim ;
Leal-Taixe, Laura .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :941-951
[6]   Learning Discriminative Model Prediction for Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6181-6190
[7]  
Bozcan I, 2020, IEEE INT CONF ROBOT, P8504, DOI [10.1109/ICRA40945.2020.9196845, 10.1109/icra40945.2020.9196845]
[8]   A complete processing chain for ship detection using optical satellite imagery [J].
Corbane, Christina ;
Najman, Laurent ;
Pecoul, Emilien ;
Demagistri, Laurent ;
Petit, Michel .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) :5837-5854
[9]  
Crisp D. J., 2004, Rep. DSTO-RR-0272
[10]   Probabilistic Regression for Visual Tracking [J].
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :7181-7190