Sub-10 nm Polyamide Nanofiltration Membrane for Molecular Separation

被引:19
|
作者
Hou, Junjun [2 ]
Jiang, Meihuizi [2 ]
He, Xiao [2 ]
Liu, Pengchao [2 ]
Long, Chang [2 ]
Yu, Lian [2 ]
Huang, Zhiwei [2 ]
Huang, Jin [1 ]
Li, Lianshan [2 ]
Tang, Zhiyong [2 ]
机构
[1] Southwest Univ, Sch Chem & Chem Engn, Chongqing Key Lab Soft Matter Mat Chem & Funct Mf, Chongqing 400715, Peoples R China
[2] Chinese Acad Sci, Key Lab Nanosyst & Hierarch Fabricat, Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
interfacial polymerization; membrane separation; nanofiltration; polyamide membrane; ultrathin; ORGANIC-SOLVENT NANOFILTRATION; WATER; MICROPOROSITY; PERFORMANCE; NANOFILMS; FILMS;
D O I
10.1002/asia.201901485
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To separate small molecules from the solvent with high permeability and selectivity, the membrane process is thought to be highly effective with much lower energy consumption when compared to the traditional thermal-based separation process. To achieve high solvent permeance, a sub-10 nm thick polyamide nanofiltration membrane was synthesized through interfacial polymerization of ethidium bromide (EtBr) and trimesoyl chloride (TMC). Thanks to the extremely low solubility of the EtBr monomer in the organic phase, the polymerization process was strictly limited at the interface of the water and hexane, leading to an ultrathin polyamide membrane with a thickness down to sub-10 nm. When used in nanofiltration, these ultrathin membranes display ultrafast water permeation of 40 liter per square meter per hour per bar (L m(-2) h(-1) bar(-1)), and a high Congo red rejection rate of 93 %. This work demonstrates a new route to synthesize ultrathin polyamide membranes by the traditional interfacial polymerization.
引用
收藏
页码:2341 / 2345
页数:5
相关论文
共 50 条
  • [21] Sub-10 nm Carbon Nanotube Transistor
    Franklin, Aaron D.
    Luisier, Mathieu
    Han, Shu-Jen
    Tulevski, George
    Breslin, Chris M.
    Gignac, Lynne
    Lundstrom, Mark S.
    Haensch, Wilfried
    NANO LETTERS, 2012, 12 (02) : 758 - 762
  • [22] Sub-10 nm imprint lithography and applications
    Chou, SY
    Krauss, PR
    Zhang, W
    Guo, LJ
    Zhuang, L
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2897 - 2904
  • [23] Fluorescence nanoscopy at the sub-10 nm scale
    Masullo, Luciano A.
    Szalai, Alan M.
    Lopez, Lucia F.
    Stefani, Fernando D.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1101 - 1112
  • [24] CMOS downsizing toward sub-10 nm
    Iwai, H
    SOLID-STATE ELECTRONICS, 2004, 48 (04) : 497 - 503
  • [25] Sub-10 nm fabrication: methods and applications
    Chen, Yiqin
    Shu, Zhiwen
    Zhang, Shi
    Zeng, Pei
    Liang, Huikang
    Zheng, Mengjie
    Duan, Huigao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2021, 3 (03)
  • [26] Capillary filling of sub-10 nm nanochannels
    Haneveld, Jeroen
    Tas, Niels R.
    Brunets, Nataliya
    Jansen, Henri V.
    Elwenspoek, Miko
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
  • [27] Growth of sub-10 nm fluorescent nanodiamonds
    Alzahrani, Yahya A.
    Alkahtani, Masfer H.
    OPTICAL MATERIALS EXPRESS, 2023, 13 (08) : 2192 - 2202
  • [28] Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1Å precision separation
    Liang, Yuanzhe
    Zhu, Yuzhang
    Liu, Cheng
    Lee, Kueir-Rarn
    Hung, Wei-Song
    Wang, Zhenyi
    Li, Youyong
    Elimelech, Menachem
    Jin, Jian
    Lin, Shihong
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [29] Conductance Statistics from a Large Array of Sub-10 nm Molecular Junctions
    Smaali, Kacem
    Clement, Nicolas
    Patriarche, Gilles
    Vuillaume, Dominique
    ACS NANO, 2012, 6 (06) : 4639 - 4647
  • [30] Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation
    Yuanzhe Liang
    Yuzhang Zhu
    Cheng Liu
    Kueir-Rarn Lee
    Wei-Song Hung
    Zhenyi Wang
    Youyong Li
    Menachem Elimelech
    Jian Jin
    Shihong Lin
    Nature Communications, 11