A deep learning framework for glaucoma detection based on robust optic disc segmentation and transfer learning

被引:20
作者
Natarajan, Deepa [1 ]
Sankaralingam, Esakkirajan [2 ]
Balraj, Keerthiveena [2 ]
Karuppusamy, Selvakumar [3 ]
机构
[1] Coimbatore Inst Technol, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
[2] PSG Coll Technol, Dept Instrumentat & Control Engn, Coimbatore, Tamil Nadu, India
[3] Vellore Inst Technol, Sch Elect Engn, Vellore, Tamil Nadu, India
关键词
glaucoma; GMM super pixel; SqueezeNet; transfer learning; UNet; FUNDUS IMAGES; CUP;
D O I
10.1002/ima.22609
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Glaucoma is a common ocular disorder, inflicting blindness in millions of people, early detection of which can reduce adverse outcomes. This paper presents a two-stage deep learning framework UNet-SNet, for glaucoma detection. Initially, each fundus image is segmented into GMM super pixels and the Region of Interest (RoI) is separated by Cuckoo Search Optimization (CSO). In the first stage, a regularized UNet is trained with RoIs for OD segmentation. In the second stage, a SqueezeNet is fine-tuned with deep features of the ODs to discriminate fundus images into glaucomotousor Normal. The UNet is trained and tested with the RIGA and RIM-ONEv2 datasets, achieving 97.84% and 99.85% accuracies respectively. The classifier is trained with the ODs segmented from the RIM-ONEv2 dataset and tested with ACRIMA, Drishti-GS1 and RIM-ONEv1 datasets accomplishing 99.86%, 97.05% and 100% accuracies respectively. Performance evaluations and complexity analyses with state-of-the-art systems demonstrate the superiority of the proposed model.
引用
收藏
页码:230 / 250
页数:21
相关论文
共 58 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Retinal fundus images for glaucoma analysis: the RIGA dataset [J].
Almazroa, Ahmed ;
Alodhayb, Sami ;
Osman, Essameldin ;
Ramadan, Eslam ;
Hummadi, Mohammed ;
Dlaim, Mohammed ;
Alkatee, Muhannad ;
Raahemifar, Kaamran ;
Lakshminarayanan, Vasudevan .
MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
[3]   Superpixel Segmentation Using Gaussian Mixture Model [J].
Ban, Zhihua ;
Liu, Jianguo ;
Cao, Li .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) :4105-4117
[4]  
Bock R, 2007, LECT NOTES COMPUT SC, V4713, P355
[5]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[6]   Automatic Identification of Glaucoma Using Deep Learning Methods [J].
Cerentini, Allan ;
Welfer, Daniel ;
d'Ornellas, Marcos Cordeiro ;
Pereira Haygert, Carlos Jesus ;
Dotto, Gustavo Nogara .
MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 :318-321
[7]   Glaucoma Classification with a Fusion of Segmentation and Image-based Features [J].
Chakravarty, Arunava ;
Sivaswamy, Jayanthi .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :689-692
[8]   The devil is in the details: an evaluation of recent feature encoding methods [J].
Chatfield, Ken ;
Lempitsky, Victor ;
Vedaldi, Andrea ;
Zisserman, Andrew .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[9]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[10]  
Chen XY, 2015, IEEE ENG MED BIO, P715, DOI 10.1109/EMBC.2015.7318462