Ultra-wideband beamforming by using a complex-valued spatio-temporal neural network

被引:0
|
作者
Suksmono, AB
Hirose, A
机构
[1] Inst Teknol Bandung, Dept Elect Engn, Bandung, Indonesia
[2] Univ Tokyo, Dept Elect & Elect Engn, Tokyo, Japan
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an ultra-wideband (UWB) beamforming technique by using a spatio-temporal complex-valued multilayer neural network (ST-CVMLNN). The complex-valued backpropagation through time (CV-BM) is employed as a learning algorithm. The system is evaluated with an ultra-wideband monocycle signal. Preliminary simulation results in suppression of UWB; interferer and in steering for desired UWB signal, demonstrating the applicability of the proposed system.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [1] Beamforming of ultra-wideband pulses by a complex-valued spatio-temporal multilayer neural network
    Suksmono, AB
    Hirose, A
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2005, 15 (1-2) : 85 - 91
  • [2] Intelligent beamforming by using a complex-valued neural network
    Suksmono, AB
    Hirose, A
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2004, 15 (3-4) : 139 - 147
  • [3] Beamforming for Impulse-Radio UWB Communication Systems Based on Complex-Valued Spatio-Temporal Neural Networks
    Yoshida, Hayato
    Hirose, Akira
    PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 848 - 851
  • [4] Performance of adaptive beamforming by using complex-valued neural network
    Suksmono, AB
    Hirose, A
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2003, 2774 : 311 - 317
  • [5] The Complex Convolutional Neural Network for Adaptive Spatio-Temporal Broadband Beamforming
    Wu, Xun
    Xue, Cong
    Zhang, Shurui
    Zhu, Hairui
    Han, Yubing
    Sheng, Weixing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10778 - 10782
  • [6] Ultra-Short-Pulse Acoustic Imaging Using Complex-Valued Spatio-Temporal Neural-Network for Null-Steering: Experimental Results
    Terabayashi, Kotaro
    Hirose, Akira
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3410 - 3413
  • [7] Solar energy prediction in IoT system based optimized complex-valued spatio-temporal graph convolutional neural network
    Kathole, Atul B.
    Jadhav, Devyani
    Vhatkar, Kapil Netaji
    Amol, Swapnaja
    Gandhewar, Nisarg
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [8] A Spatio-Temporal Channel Model for Ultra-Wideband Indoor NLOS Communications
    Venkatesh, Swaroop
    Ibrahim, Jihad
    McKinstry, David R.
    Buehrer, R. Michael
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (12) : 3552 - 3555
  • [9] Workload Prediction in Cloud Data Centers Using Complex-Valued Spatio-Temporal Graph Convolutional Neural Network Optimized With Gazelle Optimization Algorithm
    Karthikeyan, R.
    Samad, Saleem Raja Abdul
    Balamurugan, V.
    Balasubaramanian, Sundaravadivazhagan
    Cyriac, Robin
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2025, 36 (03):
  • [10] Ultra-wideband nearfield adaptive beamforming based on a RBF neural network
    Wang, M
    Yang, SY
    Wu, SJ
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 2005, 3497 : 562 - 567