Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies

被引:158
作者
Horn, Paul R. [1 ]
Mao, Yuezhi
Head-Gordon, Martin [1 ]
机构
[1] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; NATURAL STERIC ANALYSIS; BOND ORBITAL ANALYSIS; DECOMPOSITION ANALYSIS; PERTURBATION-THEORY; CHARGE-TRANSFER; NONCOVALENT INTERACTIONS; MOLECULAR-INTERACTIONS; BASIS-SETS; ATOMS;
D O I
10.1063/1.4942921
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na+, water-Cl-, and the naphthalene dimer. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 89 条
[1]  
Badenhoop JK, 1997, J CHEM PHYS, V107, P5422, DOI 10.1063/1.475149
[2]   Natural bond orbital analysis of steric interactions [J].
Badenhoop, JK ;
Weinhold, F .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (14) :5406-5421
[3]  
Badenhoop JK, 1999, INT J QUANTUM CHEM, V72, P269, DOI 10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO
[4]  
2-8
[5]   A NEW ANALYSIS OF CHARGE-TRANSFER AND POLARIZATION FOR LIGAND-METAL BONDING - MODEL STUDIES OF AL4CO AND AL4NH3 [J].
BAGUS, PS ;
HERMANN, K ;
BAUSCHLICHER, CW .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (09) :4378-4386
[6]   van der Waals forces in density functional theory: a review of the vdW-DF method [J].
Berland, Kristian ;
Cooper, Valentino R. ;
Lee, Kyuho ;
Schroeder, Elsebeth ;
Thonhauser, T. ;
Hyldgaard, Per ;
Lundqvist, Bengt I. .
REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (06)
[7]   Kohn-Sham density functional theory: Predicting and understanding chemistry [J].
Bickelhaupt, FM ;
Baerends, EJ .
REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 15, 2000, 15 :1-86
[8]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[9]   Energy decomposition analyses for many-body interaction and applications to water complexes [J].
Chen, W ;
Gordon, MS .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (34) :14316-14328
[10]   Minimizing Density Functional Failures for Non-Covalent Interactions Beyond van der Waals Complexes [J].
Corminboeuf, Clemence .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (11) :3217-3224